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Abstract

We study solutions of an operator-valued NLS and apply our results to construct count-
able superpositions of solitons for the scalar NLS.
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1 Introduction and main results

In the present note we explain how to construct solutions of the NLS via the study of a corre-
sponding non-abelian system. Non-abelian integrable systems are a very active field of recent
research (cf [5, 8, 10, 11] to mention only a few closely related to our work). From our point
of view, they provide the appropriate framework to apply functional analytic techniques to the
original scalar equations. The operator theoretic part of this note is based on [9], where the
whole AKNS is treated uniformly. We point out several sharpenings which become possible for
the individual equation at hand.

Concerning applications, we have to restrict to a concise discussion of the countable superpo-
sitions of solitons. This topic was initiated by Gesztesy and collaborators with results for several
other equations [6, 7]. Their approach requires involved computations along the lines of ISM.
Our method leads to much shorter arguments as hard analysis is replaced by advanced func-
tional analysis. For more applications, like the asymptotic description of multipole solutions,
the reader is referred to [9].

Replacing u by U2 and −u by U1 in the scalar NLS −iut = uxx + 2u|u|2 yields a non-abelian
NLS system

iU1,t = U1,xx − 2U1U2U1, −iU2,t = U2,xx − 2U2U1U2 (1.1)

We interpret U1, U2 as functions depending on the real variables x, t with values in the spaces
L(E2, E1), L(E1, E2) of bounded linear operators mapping between Banach spaces E2 and E1.

In Section 2, we find soliton-like solutions of (1.1).

Theorem 1. Let E1, E2 be Banach spaces and A1 ∈ L(E1), A2 ∈ L(E2). Assume that L1 =
L1(x, t) ∈ L(E2, E1), L2 = L2(x, t) ∈ L(E1, E2) are differentiable operator-functions solving the
base equations L1,x = A1L1, L1,t = −iA2

1L1, L2,x = A2L2, L2,t = iA2
2L2. Then

U1 = (I − L1L2)−1(A1L1 + L1A2), U2 = (I − L2L1)−1(A2L2 + L2A1) (1.2)

solve the non-abelian NLS system (1.1) wherever (I − L1L2), (I − L2L1) are both invertible.

1Presented at the 3rd Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Göteborg,
Sweden, October 11–13, 2007.
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Since the proof of this result is mainly algebraic and does not use specific properties of
bounded operators, more general formulations for functions with values in appropriate algebras
are possible. We stated the above version for sake of concreteness. The special form of the
solution (1.2) was obtained as a consequence of more general considerations about the noncom-
mutative AKNS system in [9]. A reformulation closer to the familiar scalar solution is given in
Theorem 3.

In Section 3 we derive solution formulas for the NLS which still depend on arbitrary operator
parameters A1 ∈ L(E1), A2 ∈ L(E2). Such solution formulas are actually very general (see [2, 4]
for the KdV case). As a concrete application, we construct countable superpositions of solitons
in Sec. 4.

Theorem 2. Let (kj)j be a bounded sequence with Re(kj) > 0 for all j, and (aj)j, (cj)j sequences
satisfying the growth condition

(
aj√

Re(kj)

)

j

∈ E′,

(
cj√

Re(kj)

)

j

∈ E (1.3)

where E is one of the classical Banach spaces E = c0 or E = `p (1 ≤ p < ∞) and E′ is its
topological dual. Then the following spectral determinants of the infinite matrices are well-defined

u = 1−
detλ

(
I −L

L I + L0

)

detλ

(
I −L

L I

) , L =
( ajci

ki + kj

fi

)∞
i,j=1

, L0 =
(
ajcifi

)∞
i,j=1

where fi(x, t) = exp(kix − ik2
i t). Moreover, u is a solution of the NLS equation −iut = uxx +

2u|u|2.
If we truncate sequences by requiring j ≤ N , the formula of Theorem 2 describes an N -

soliton uN . Then u is their limit for N →∞. Notice that neither the existence nor the solution
property of u are clear a priori.

2 An operator equation governing the NLS

Let E be a Banach space and J ∈ L(E) with J2 = −I. For an operator-valued function
U = U(x, t) ∈ L(E) we consider the non-commutative partial differential equation

−JUt = Uxx − 2U3 (2.1)

and show that it has a traveling wave solution.

Theorem 3. Let A ∈ L(E) with [A, J ] = 0. Assume that L = L(x, t) ∈ L(E) is an operator-
valued function anti-commuting with J and solving the base equations Lx = AL, Lt = JA2L.
Then

U = (I − L2)−1(AL + LA) (2.2)

solves the operator equation (2.1) wherever I − L2 is invertible.

For the proof we introduce in addition the operator-valued function

V = (I − L2)−1(A + LAL) (2.3)



A non-abelian NLS and countable superposition of solitons 247

Lemma 1. The derivative of the operator-valued functions U = U(x, t), V = V (x, t) given in
(2.2), (2.3) with respect to x is Ux = V U , Vx = U2.

Proof. First we recall the non-abelian differentiation rule for inverse operators. If T = T (x)
is differentiable with respect to x and invertible for all x ∈ R, then T−1 is differentiable and
T−1

x = −T−1TxT−1. Using the base equations we thus infer

Vx = −(I − L2)−1(−L2)x(I − L2)−1(A + LAL) + (I − L2)−1(A + LAL)x

= (I − L2)−1
(
(AL + LA)L

)
(I − L2)−1(A + LAL) + (I − L2)−1

(
AL + LA

)
AL

= U(I − L2)−1
(
L(A + LAL) + (I − L2)AL

)

= U(I − L2)−1
(
AL + LA

)

= U2

Analogously, one checks Ux = V U .

In the same way one can calculate the derivative with respect to the time variable. Note that
here the fact that [A, J ] = 0 and {L, J} = 0 is crucial. We omit the proof.

Lemma 2. The derivative of the operator-valued function U = U(x, t) given in (2.2) with respect
to t is

Ut = J(I − L2)−1(A2 − LA2L)U

Lemma 3. For the operator-functions U , V in (2.2), (2.3), the following identity holds

V 2 − U2 = (I − L2)−1(A2 − LA2L) (2.4)

Proof. We need the following auxiliary identity

L(I − L2)−1L = (I − L2)−1L2 = (I − L2)−1
(
I − (I − L2)

)
= (I − L2)−1 − I

which is applied in the third step of the succeeding calculation to replace the terms in the first
and in the last large brackets.

(I − L2)V 2 = (A + LAL)(I − L2)−1(A + LAL)

= A
(
(I − L2)−1

)
A + A

(
(I − L2)−1L

)
AL + LA

(
L(I − L2)−1

)
A

+ LA
(
L(I − L2)−1L

)
AL

= A
(
I + L(I − L2)−1L

)
A + A

(
L(I − L2)−1

)
AL + LA

(
(I − L2)−1L

)
A

+ LA
(
(I − L2)−1 − I

)
AL

= (A2 − LA2L) + (AL + LA)(I − L2)−1(AL + LA)

= (A2 − LA2L) + (I − L2)U2

Proof of Theorem 3. Using Lemma 1 we get

Uxx = (V U)x = VxU + V Ux = U3 + V 2U

Thus, applying successively Lemma 3 and Lemma 2,

Uxx − 2U3 = (V 2 − U2)U = (I − L2)−1(A2 − LA2L)U = −JUt

Proof of Theorem 1. We obtain Theorem 1 by applying Theorem 3 to E := E1 ⊕ E2,

J :=
( −iIE1 0

0 iIE2

)
, A :=

(
A1 0
0 A2

)
, L :=

(
0 L1

L2 0

)
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3 Solution formulas for the NLS

Next we explain how Theorem 1 can be used to extract explicit solution formulas for the scalar
NLS system

iu1,t = u1,xx − 2u2
1u2, −iu2,t = u2,xx − 2u2

2u1 (3.1)

To formulate our result we recall that a one-dimensional operator T ∈ L(E, F ) can be written
as a ⊗ c with appropriate a ∈ E′, c ∈ F , where the map a ⊗ c is defined by a ⊗ c(v) = 〈v, a〉c
(and 〈v, a〉 denotes the evaluation of the functional a on v ∈ E).

Proposition 1. Let E1, E2 be Banach spaces and A1 ∈ L(E1), A2 ∈ L(E2). Assume that there
are operators B1 ∈ A(E2, E1), B2 ∈ A(E2, E1), belonging to a quasi-Banach ideal A admitting
a continuous determinant δ, which satisfy the one-dimensionality conditions

A1B1 + B1A2 = a2 ⊗ c1, A2B2 + B2A1 = a1 ⊗ c2 (3.2)

with functionals a1 ∈ E′
1, a2 ∈ E′

2, and vectors c1 ∈ E1, c2 ∈ E2 and 〈c1, a1〉 = 〈c2, a2〉 = 1.
Then a solution of the NLS system (3.1) is given by

u1 = 1−
δ

(
I − a1 ⊗ `1 L1

L2 I

)

δ

(
I L1

L2 I

) , u2 = 1−
δ

(
I L1

L2 I − a2 ⊗ `2

)

δ

(
I L1

L2 I

) (3.3)

with the operator-functions Lj(x, t) = L̂j(x, t)Bj, the vector-functions `j(x, t) = L̂j(x, t)cj, where
L̂1(x, t) = exp(A1x−iA2

1t), L̂2(x, t) = exp(A2x+iA2
2t) provided the denominator does not vanish.

Remark 1. We want to stress that the one-dimensionality condition (3.2) can always be met
provided 0 6∈ spec(A1) + spec(A2) (Minkowski sum), see also [3]. The normalization 〈cj , aj〉 = 1
is only chosen for convenience. It suffices to assume 〈cj , aj〉 6= 0 for j = 1, 2.

Proof. The main argument of the proof is contained in the Step 2 where a solution of the scalar
system is constructed from a solution of the non-abelian system by cross-evaluation.

Step 1: Applying Theorem 1, it can be immediately checked that the operator-functions

U1 = (I − L1L2)−1(A1L1 + L1A2), U2 = (I − L2L1)−1(A2L2 + L2A1)

solve the non-abelian NLS system (1.1).
Step 2: As a consequence of the one-dimensionality condition (3.2),

U1 = (I − L1L2)−1L̂1(A1B1 + B1A2) = (I − L1L2)−1L̂1(a2 ⊗ c1) = a2 ⊗ f1

where f1 = (I − L1L2)−1L̂1c1. Similarly, U2 = a1 ⊗ f2 with f2 = (I − L2L1)−1L̂2c2.
We now show that

u1 = 〈f1, a1〉, u2 = 〈f2, a2〉 (3.4)

solve (3.1). Indeed, evaluating the first equation of the operator system (1.1) on the vector c2,
we obtain the vector-equation

f1,xx − 2〈f1, a1〉〈f2, a2〉f1 = if1,t

Applying the functional a1, we get the first equation of the system (3.1). Similarly for the second
equation of (3.1).
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Step 3: It remains to verify the solution formula in terms of the determinant available on
the underlying quasi-Banach ideal. To this end we first note

(
I L1

L2 I

)−1

=
(

(I − L1L2)−1 0
0 (I − L2L1)−1

) (
I −L1

−L2 I

)

Using the multiplicity property of a determinant and the fact that on the finite-dimensional
operators the generalized determinant coincides with the standard determinant2,

δ

(
I − a1 ⊗ `1 L1

L2 I

)/
δ

(
I L1

L2 I

)
= δ

((
I L1

L2 I

)−1 (
I − a1 ⊗ `1 L1

L2 I

))

= δ

(
I − (I − L1L2)−1a1 ⊗ `1 0
(I − L2L1)−1L2a1 ⊗ `1 I

)

= δ
(
I −

(
a1, 0

)
⊗

(
(I − L1L2)−1`1,−(I − L2L1)−1L2`1

))

= 1− 〈(I − L1L2)−1`1, a1〉 = 1− u1

and similarly for the other identity in (3.3).

4 Countable superposition of solitons

As an application we study solutions of the NLS arising from our solution formula by plugging in
diagonal operators on sequence spaces. The resulting solution class describes the superposition
of countably many solitons.

Choose E1 = E2 =: E to be one of the classical sequence spaces c0, `p (1 ≤ p < ∞) and, for
a given bounded sequence (kj)j with Re(kj) > 0 for all j, we define A1, A2 to be the diagonal
operators generated by (kj)j , (kj)j , respectively.

Let a1 =: a, c1 =: c be sequences satisfying the growth condition (1.3) and set a2 = −a1,
c2 = c1. Then the one-dimensionality condition (3.2) can be solved explicitly by

B1 =
( −ajci

ki + kj

)∞
i,j=1

∈ L∞ ◦ H ◦ L1(E)

and B2 = −B1, where L∞ ◦ H ◦ L1 denotes the quasi-Banach ideal of operators factorizing
through first an L1-space, then a Hilbert space, and finally an L∞-space.

Indeed, B1 = −D2T
′TD1 where D1 : E → `1, D2 : `∞ → E are the diagonal operators

generated by the sequences (aj/
√

Re(kj))j , (cj/
√

Re(kj))j , and T : `1 → L2[0,∞) defined on
the standard basis by Tej = f j with fj(s) =

√
Re(kj) exp(−kjs).

Since L∞ ◦ H ◦ L1 admits a continuous (even spectral) determinant detλ [1], the solution
formula of Proposition 1 can be applied. Moreover one can check that the particular choices
above guarantee u := u2 = −u1. This yields Theorem 2.

Remark 2. The results of this section can be easily generalized to construct also countable su-
perpositions of multipole solutions of the NLS. Moreover it can be shown that all these solutions
are globally regular. For details see [9].
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