Journal of

A New Number Theory-Algebra Analysis II

Sonaglioni L*

Free Professionist, Italy

Abstract

The basis of this quaternions algebra. The problem of the $\vec{j} \cdot \vec{k}$ product. 3d (and 4 d) product and division in algebraic form; also, the algebraic forms of the product and of the division are differentiable. Questions about the possibility of extend this algebra to more dimensions.

Keywords: Quaternions; Operator theory; Algebra; Tensor methods

Three-Dimensions

A recent publication [1] has extended the concepts of the sum and of the product for $3 \mathrm{~d}-4 \mathrm{~d}$ numbers as new quaternions. The sum and the product, as defined, are commutative.

Paper [1] implicitly gave the definitions of the norm (or modulus) of a 3d number, of the inverse of a 3d number, and of the conjugate.

Figure 1 gives a 3d space representation; the tern $(\vec{i}, \vec{j}, \vec{k})$ must be considered a tern of orthogonal unit vectors. $\overrightarrow{1}$ is the real unity and can be omitted in the symbolic calculus; so for the 3d space we can write:

$$
s=x+\vec{j} \cdot y+\vec{k} \cdot z
$$

the conjugate of s :

$$
\bar{s}=x-\vec{j} \cdot y-\vec{k} \cdot z
$$

the norm (or modulus) of s :
$||s||=|s|=\sqrt{s \cdot \bar{s}}=\sqrt{x^{2}+y^{2}+z^{2}}$
the $\frac{1}{s}$ inverse property:
$s \cdot \frac{1}{s}=s \cdot \frac{\bar{s}}{|s|^{2}}=\overrightarrow{1}$
the product of s for a real constant:
$\sigma \cdot s=\sigma \cdot x+\vec{j} \cdot \sigma \cdot y+\vec{k} \cdot \sigma \cdot z \quad \sigma \in \mathfrak{R}$

Figure 1: 3d space representation.
the scalar product and the vector product are also well defined (see code $3 \mathrm{~d}-2.4 \mathrm{~g}$ in appendix of paper [2]).

3d scalar product:

$$
s_{a} \wedge s_{b}=x_{a} \cdot x_{b}+y_{a} \cdot y_{b}+z_{a} \cdot z_{b}
$$

3d vector product:

$$
s_{a} \times s_{b}=\operatorname{det}\left[\begin{array}{ccc}
\overrightarrow{1} & \vec{j} & \vec{k} \\
x_{a} & y_{a} & z_{a} \\
x_{b} & y_{b} & z_{b}
\end{array}\right] \quad \text { [operative formula] }
$$

in algebraic form:

$$
s_{a} \times s_{b}=\left(y_{a} \cdot z_{b}-z_{a} \cdot y_{b}\right)+\vec{j} \cdot\left(z_{a} \cdot x_{b}-x_{a} \cdot z_{b}\right)+\vec{k} \cdot\left(x_{a} \cdot y_{b}-y_{a} \cdot x_{b}\right)
$$

So, we have the same symbolic of the standard 2 d complex numbers.
Paper [2] analyzed some aspects of this algebra, we have seen that this algebra is not distributive, and that this produces some limitations in derivatives and integrals, also we have seen the extended definitions of functions such as $\sin (s)$ and $\cos (s)$ may be meaningless.

The problem is because this 3d space is a curved space, the transformations that permit to define the product as a commutative product, are not linear.

Someone could object that the algebraic definition of the $\vec{j} \cdot \vec{k}$ product, in paper [1], is undefined (in polar notation is defined and it is differentiable); in 1843 William Rowan Hamilton has defined the $j \cdot k$ product in an algebraic form but, with that definition, Hamilton created a non-commutative algebra.

I try now to give an answer about the generic algebraic definition of the product between two 3d numbers as defined in paper [1].

Given:

$$
s_{a}=x_{a}+\vec{j} \cdot y_{a}+\vec{k} \cdot z_{a}
$$

and

[^0]$s_{b}=x_{b}+\vec{j} \cdot y_{b}+\vec{k} \cdot z_{b}$
let us develop the algebraic form of the product $s^{\prime}=s_{a} \cdot s_{b}$
For a generic $s(3 \mathrm{~d})$ number we can write:
$r=\sqrt{x^{2}+y^{2}+z^{2}} \quad c=\sqrt{x^{2}+y^{2}}$
if $r \neq 0$ then $\sin (\beta)=\frac{z}{r} ; \cos (\beta)=\sqrt{1-\frac{z^{2}}{r^{2}}}$
if $c \neq 0$ then $\sin (\alpha)=\frac{y}{c} ; \cos (\alpha)=\frac{x}{c}$
if $c=0$ then $\alpha=0, \beta=\frac{\pi}{2} \cdot \operatorname{sign}(z) ;(x=y=0)$
if $r=0$ and $c=0$ then $\beta=0, \quad \alpha=0 \quad(x=y=z=0)$
so
$s^{\prime}=\left(x_{a}+\vec{j} \cdot y_{a}+\vec{k} \cdot z_{a}\right) \cdot\left(x_{b}+\vec{j} \cdot y_{b}+\vec{k} \cdot z_{b}\right)=x^{\prime}+\vec{j} \cdot y^{\prime}+\vec{k} \cdot z^{\prime}$
the result of the product $s^{\prime}=s_{a} \cdot s_{b}$ in polar notation form is:
\[

$$
\begin{aligned}
& x^{\prime}=r_{a} \cdot r_{b} \cdot \cos \left(\beta_{a}+\beta_{b}\right) \cdot \cos \left(\alpha_{a}+\alpha_{b}\right) \\
& y^{\prime}=r_{a} \cdot r_{b} \cdot \cos \left(\beta_{a}+\beta_{b}\right) \cdot \sin \left(\alpha_{a}+\alpha_{b}\right) \\
& z^{\prime}=r_{a} \cdot r_{b} \cdot \sin \left(\beta_{a}+\beta_{b}\right)
\end{aligned}
$$
\]

Definitions:

$r_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}} \quad c_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}}$
$r_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}} \quad c_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}}$
now, we need to analyze 4 cases:
(1) Generic case: $c_{a} \neq 0, c_{b} \neq 0$
$\cos \left(\beta_{a}+\beta_{b}\right)=\frac{1}{r_{a} \cdot r_{b}}\left(c_{a} \cdot c_{b}-z_{a} \cdot z_{b}\right)$
$\cos \left(\alpha_{a}+\alpha_{b}\right)=\frac{\left(x_{a} \cdot x_{b}-y_{a} \cdot y_{b}\right)}{c_{a} \cdot c_{b}}$.
$\sin \left(\alpha_{a}+\alpha_{b}\right)=\frac{\left(x_{a} \cdot y_{b}+y_{a} \cdot x_{b}\right)}{c_{a} \cdot c_{b}}$
$\sin \left(\beta_{a}+\beta_{b}\right)=\frac{1}{r_{a} \cdot r_{b}}\left(c_{a} \cdot z_{b}+z_{a} \cdot c_{b}\right)$
by substituting:
$x^{\prime}=\left(c_{a} \cdot c_{b}-z_{a} \cdot z_{b}\right) \cdot \frac{\left(x_{a} \cdot x_{b}-y_{a} \cdot y_{b}\right)}{c_{a} \cdot c_{b}}$
$y^{\prime}=\left(c_{a} \cdot c_{b}-z_{a} \cdot z_{b}\right) \cdot \frac{\left(x_{a} \cdot y_{b}+y_{a} \cdot x_{b}\right)}{c_{a} \cdot c_{b}}$
$z^{\prime}=\left(c_{a} \cdot z_{b}+z_{a} \cdot c_{b}\right)$
(2) If $c_{a}=0, c_{b} \neq 0$ then $\alpha_{a}=0, \beta_{a}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{a}\right)$
$\left(x_{a}=0, y_{a}=0\right)$
so in this case:

$$
\begin{aligned}
& \cos \left(\beta_{a}+\beta_{b}\right)=-\operatorname{sign}\left(z_{a}\right) \cdot \frac{z_{b}}{r_{b}} \\
& \cos \left(\alpha_{a}+\alpha_{b}\right)=\cos \left(\alpha_{b}\right)=\frac{x_{b}}{c_{b}}
\end{aligned}
$$

$\sin \left(\alpha_{a}+\alpha_{b}\right)=\sin \left(\alpha_{b}\right)=\frac{y_{b}}{c_{b}}$
$\sin \left(\beta_{a}+\beta_{b}\right)=\operatorname{sign}\left(z_{a}\right) \cdot \cos \left(\beta_{b}\right)=\operatorname{sign}\left(z_{a}\right) \cdot \frac{c_{b}}{r_{b}}$
because in this case $r_{a}=\sqrt{z_{a}^{2}}$
it can be observed that $r_{a} \cdot \operatorname{sign}\left(z_{a}\right)=z_{a}$
so:
$x^{\prime}=-r_{a} \cdot r_{b} \cdot \operatorname{sign}\left(z_{a}\right) \cdot \frac{z_{b}}{r_{b}} \cdot \frac{x_{b}}{c_{b}}=-z_{a} \cdot z_{b} \cdot \frac{x_{b}}{c_{b}}$
$y^{\prime}=-r_{a} \cdot r_{b} \cdot \operatorname{sign}\left(z_{a}\right) \cdot \frac{z_{b}}{r_{b}} \cdot \frac{y_{b}}{c_{b}}=-z_{a} \cdot z_{b} \cdot \frac{y_{b}}{c_{b}}$
$z^{\prime}=r_{a} \cdot r_{b} \cdot \operatorname{sign}\left(z_{a}\right) \cdot \frac{c_{b}}{r_{b}}=z_{a} \cdot c_{b}$
(3) If $c_{a} \neq 0, c_{b}=0$ then $\alpha_{b}=0, \beta_{b}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{b}\right)$
$x^{\prime}=-z_{a} \cdot z_{b} \cdot \frac{x_{a}}{c_{a}}$
$y^{\prime}=-z_{a} \cdot z_{b} \cdot \frac{y_{a}}{c_{a}}$
$z^{\prime}=z_{b} \cdot c_{a}$
(4) If $c_{a}=0$ and $c_{b}=0$ then $\alpha_{a}=0, \alpha_{b}=0$
$\beta_{a}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{a}\right), \beta_{b}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{b}\right)$
$\left(x_{a}=0, y_{a}=0\right) ;\left(x_{b}=0, y_{b}=0\right)$
in this case $\beta_{a}+\beta_{b}=0$ or $\pm \pi$

$$
\begin{aligned}
& x^{\prime}=-z_{a} \cdot z_{b} \\
& y^{\prime}=0 \\
& z^{\prime}=0
\end{aligned}
$$

The generic case (1) of the algebraic product of $s_{a} \cdot s_{b}$ is differentiable. The other cases are limit case and are differentiable too.

The algebraic form of $\frac{1}{s}$ is quite simple:
given:
$s=x+\vec{j} \cdot y+\vec{k} \cdot z \quad r=\sqrt{x^{2}+y^{2}+z^{2}} \neq 0$
$s^{\prime}=\frac{1}{s}=\frac{1}{r^{2}}(x-\vec{j} \cdot y-\vec{k} \cdot z)$
and it is differentiable.
Now we can define the algebraic form of the division: $s^{\prime}=\frac{s_{a}}{s_{b}}$
Definitions:

$$
\begin{array}{ll}
r_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}} & c_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}} \\
r_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}} \neq 0 & c_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}}
\end{array}
$$

it can be observed that
$\frac{1}{s_{b}}=\frac{1}{r_{b}^{2}} \cdot\left(x_{b}-\vec{j} \cdot y_{b}-\vec{k} \cdot z_{b}\right)$
so
$s^{\prime}=\frac{s_{a}}{s_{b}}=\left(x_{a}+\vec{j} \cdot y_{a}+\vec{k} \cdot z_{a}\right) \cdot\left[\frac{1}{r_{b}^{2}} \cdot\left(x_{b}-\vec{j} \cdot y_{b}-\vec{k} \cdot z_{b}\right)\right]$
again we have to analyze 4 cases:
(1a) Generic case: $c_{a} \neq 0, c_{b} \neq 0$
$x^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(c_{a} \cdot c_{b}+z_{a} \cdot z_{b}\right) \cdot \frac{\left(x_{a} \cdot x_{b}+y_{a} \cdot y_{b}\right)}{c_{a} \cdot c_{b}}$
$y^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(c_{a} \cdot c_{b}+z_{a} \cdot z_{b}\right) \cdot \frac{\left(-x_{a} \cdot y_{b}+y_{a} \cdot x_{b}\right)}{c_{a} \cdot c_{b}}$
$z^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(-c_{a} \cdot z_{b}+z_{a} \cdot c_{b}\right)$
(2a)If $c_{a}=0, c_{b} \neq 0$

$$
x^{\prime}=\frac{1}{r_{b}^{2}} \cdot z_{a} \cdot z_{b} \cdot \frac{x_{b}}{c_{b}}
$$

$$
y^{\prime}=-\frac{1}{r_{b}^{2}} \cdot z_{a} \cdot z_{b} \cdot \frac{y_{b}}{c_{b}}
$$

$$
z^{\prime}=\frac{1}{r_{b}^{2}} \cdot z_{a} \cdot c_{b}
$$

(3a) If $c_{a} \neq 0, c_{b}=0$
in this case it can be observed that $\frac{1}{r_{b}^{2}} \cdot z_{b}=\operatorname{sign}\left(z_{b}\right)$

$$
\begin{aligned}
& x^{\prime}=\frac{1}{r_{b}^{2}} \cdot z_{a} \cdot z_{b} \cdot \frac{x_{a}}{c_{a}}=\operatorname{sign}\left(z_{b}\right) \cdot z_{a} \cdot \frac{x_{a}}{c_{a}} \\
& y^{\prime}=\frac{1}{r_{b}^{2}} \cdot z_{a} \cdot z_{b} \cdot \frac{y_{a}}{c_{a}}=\operatorname{sign}\left(z_{b}\right) \cdot z_{a} \cdot \frac{y_{a}}{c_{a}} \\
& z^{\prime}=-\frac{1}{r_{b}^{2}} \cdot z_{b} \cdot c_{a}=-\operatorname{sign}\left(z_{b}\right) \cdot c_{a}
\end{aligned}
$$

(4a) If $c_{a}=0, c_{b}=0$
$x^{\prime}=\frac{z_{a}}{z_{b}}$
$y^{\prime}=0$
$z^{\prime}=0$
The generic case (1a) of the algebraic form of the division $\frac{s_{a}}{s_{b}}$ is differentiable. The other cases are limit cases, and are differentiable too, in fact $\frac{s_{a}}{s_{b}}$ can be seen as the product of $s_{a} \cdot \frac{1}{s_{b}}$ where $\left|s_{b}\right| \neq 0$

Anyway, the objectionable limit case (3a) is:

$$
\begin{aligned}
& x^{\prime}=\operatorname{sign}\left(z_{b}\right) \cdot z_{a} \cdot \frac{x_{a}}{c_{a}} \\
& y^{\prime}=\operatorname{sign}\left(z_{b}\right) \cdot z_{a} \cdot \frac{y_{a}}{c_{a}} \\
& z^{\prime}=-\operatorname{sign}\left(z_{b}\right) \cdot c_{a}
\end{aligned}
$$

The differential depends on x_{a}, y_{a}, z_{a} and on the sign of z_{b}; this
because we are doing a differential around a fixed s_{b} point (North Pole or South Pole of the sphere), where, what matters of s_{b}, is just the sign of z_{b}.

The algebraic definition of the $\vec{j} \cdot \vec{k}$ product can be seen as defined by the algebraic analysis of above and, in particular, it is the limit case (3) (see appendix B for the solved code of the algebraic definition of the 3d product and division).

Another consequence of this analysis is that, now, it is possible to try to analyze a generic 2° order (3d) equation:

$$
a \cdot s^{2}+b \cdot s+c=0 \Leftrightarrow a \cdot s \cdot|s|^{2}+b \cdot|s|^{2}+c \cdot \bar{s}=0 \quad|s|^{2} \neq 0
$$

where, in general, a, b, and c can be real numbers or 3 d numbers.
Because now we have an algebraic differentiable definition of the product and of the division, it is clear that if we have two 3d functions (see paper [2]) such as:

$$
\begin{aligned}
& f_{1}(z)=x_{1}(z)+\vec{j} \cdot y_{1}(z)+\vec{k} \cdot z_{1}(z) \quad z \in R \quad \text { or } z \in C \\
& f_{2}(z)=x_{2}(z)+\vec{j} \cdot y_{2}(z)+\vec{k} \cdot z_{2}(z)
\end{aligned}
$$

Where $x_{1}(z), y_{1}(z), z_{1}(z)$ and $x_{2}(z), y_{2}(z), z_{2}(z)$ are all differentiable functions and they give real results, the product:

$$
f(z)=f_{1}(z) \cdot f_{2}(z)
$$

and the division:

$$
f(z)=f_{1}(z) / f_{2}(z)
$$

are differentiable. This was another open argument of paper [2].

Conclusion

The above analysis has shown it is possible to give an algebraic definition of the product and of the division for 3d numbers as defined in paper [1] and that these algebraic definitions are differentiable.

Same algebraic analysis can also be done for 4 d product and division, even that it is a bit more complex (see Figure 2 and appendix A).

For a 4 d number we can write:
$s=x+\vec{j} \cdot y+\vec{k} \cdot z+\vec{h} \cdot t$
the conjugate:

$$
\bar{s}=x-\vec{j} \cdot y-\vec{k} \cdot z-\vec{h} \cdot t
$$

and so on for the inverse property, the norm (or modulus) etc.
In paper [2] I gave a proposal generic sum definition.

Figure 2: 4d space representation.

The objectionable point was to assign by default the v3space' sign set to 1 in the case that $r^{\prime}{ }_{a}=r_{b}^{\prime} \quad\left(r_{a}^{\prime}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}}\right.$; $r_{b}^{\prime}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}}$; also, it could be questionable the generic 4 d scalar product definition. This was a mistake.

The solution is much simpler; the γ angle must be treated in the same way of the β angle; β rotates, but in fact, at the end of calculations is reduced to $|\beta|<=\pi / 2$ (see Figure 2). The same must be done for γ, at the end of calculations γ must be reduced to $|\gamma|<=\pi / 2$.

So the sum in 4 d space is the same of the sum in 3d space (see appendix C) and, because the schema for 4 d is the same for 3 d , it is obvious that this idea can be extended to more dimensions.

There are no problems to extend the scalar product formula to more dimensions; a last consideration can be done for the extended definition of the 4 d vector product.

A 3d number (or a 4 d number) can be seen as a vector (x, y, z). Let us consider C as the 3 d resulting vector product between two 3 d vectors A and B; C can be seen as an orthogonal vector whose length is the area of the parallelogram identified by the two non-parallel vectors A and B, so the D 4 d resulting vector product between tree 4 d vectors A, B and C can be defined as an orthogonal vector to A, B and C whose length is the volume of the solid identified by the tree non-coplanar 4 d vectors A, B and C (for simplicity, you can think that A, B and C are 4 d numbers whose \vec{h} component value is 0).

The D vector as result of 4 d vector product of A, B and C , is given by the following operative formula:

$$
D=\operatorname{det}\left[\begin{array}{cccc}
\overrightarrow{1} & \vec{j} & \vec{k} & \vec{h} \\
x_{A} & y_{A} & z_{A} & t_{A} \\
x_{B} & y_{B} & z_{B} & t_{B} \\
x_{C} & y_{C} & z_{C} & t_{C}
\end{array}\right]
$$

The formula can be extended to more dimensions. Versus (sign) of D depends on the tern A, B and C , but these are all well-known questions.
Appendix A: 4d numbers analysis
Consider s a 4 d number:
$s=x+\vec{j} \cdot y+\vec{k} \cdot z+\vec{h} \cdot t$
given:
$r=\sqrt{x^{2}+y^{2}+z^{2}+t^{2}}$
$\sin (\gamma)=\frac{t}{r}$
$\cos (\gamma)=\sqrt{1-\frac{t^{2}}{r^{2}}}$
$r^{\prime}=\sqrt{x^{2}+y^{2}+z^{2}} \neq 0$
$\sin (\beta)=\frac{z}{r^{\prime}}$
$\cos (\beta)=\sqrt{1-\frac{z^{2}}{r^{\prime 2}}}$
given:
$c=\sqrt{x^{2}+y^{2}} \neq 0$
$\sin (\alpha)=\frac{y}{c}$
$\cos (\alpha)=\frac{x}{c}$
If $c=0$ then $\alpha=0, \beta=\frac{\pi}{2} \cdot \operatorname{sign}(z) ;(x=y=0)$
if $r^{\prime}=0$, then $\beta=0, \alpha=0,(x=y=z=0)$
The 4 d product between two 4 d numbers $s^{\prime}=s_{a} \cdot s_{b}$ is:
$s^{\prime}=\left(x_{a}+\vec{j} \cdot y_{a}+\vec{k} \cdot z_{a}+\vec{h} \cdot t_{a}\right) \cdot\left(x_{b}+\vec{j} \cdot y_{b}+\vec{k} \cdot z_{b}+\vec{h} \cdot t_{b}\right)$
$s^{\prime}=s_{a} \cdot s_{b}=x^{\prime}+\vec{j} \cdot y^{\prime}+\vec{k} \cdot z^{\prime}+\vec{h} \cdot t^{\prime}$
The result in polar notation is:
$R^{\prime}=r_{a} \cdot r_{b} \cdot\left|\cos \left(\gamma_{a}+\gamma_{b}\right)\right|=\left|r_{a}^{\prime} \cdot r_{b}^{\prime}-t_{a} \cdot t_{b}\right|$ (see definitions below)
$t^{\prime}=r_{a} \cdot r_{b} \cdot \sin \left(\gamma_{a}+\gamma_{b}\right)$
$z^{\prime}=R^{\prime} \cdot \sin \left(\beta_{a}+\beta_{b}\right)$
$y^{\prime}=R^{\prime} \cdot \cos \left(\beta_{a}+\beta_{b}\right) \cdot \sin \left(\alpha_{a}+\alpha_{b}\right)$
$x^{\prime}=R^{\prime} \cdot \cos \left(\beta_{a}+\beta_{b}\right) \cdot \cos \left(\alpha_{a}+\alpha_{b}\right)$
Definitions:
$r_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}+t_{a}^{2}} \quad r_{a}^{\prime}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}} \quad c_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}}$
$r_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}+t_{b}^{2}} \quad r_{b}^{\prime}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}} \quad c_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}}$
$\cos \left(\gamma_{a}+\gamma_{b}\right)=\frac{r_{a}^{\prime} \cdot r_{b}^{\prime}-t_{a} \cdot t_{b}}{r_{a} \cdot r_{b}}$
$\sin \left(\gamma_{a}+\gamma_{b}\right)=\frac{r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}}{r_{a} \cdot r_{b}}$
now we have to analyze 7 cases:
(1) Generic case: $c_{a} \neq 0, c_{b} \neq 0, r_{b}{ }_{b} \cdot r^{\prime}{ }_{b} \neq 0$
$r_{a}^{\prime}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}} \quad r_{b}^{\prime}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}}$
$R^{\prime}=\left|r^{\prime}{ }_{a} \cdot r_{b}^{\prime}-t_{a} \cdot t_{b}\right|$
$\cos \left(\beta_{a}+\beta_{b}\right)=\frac{1}{r_{a}^{\prime} \cdot r_{b}^{\prime}}\left(c_{a} \cdot c_{b}-z_{a} \cdot z_{b}\right)$
$\cos \left(\alpha_{a}+\alpha_{b}\right)=\frac{\left(x_{a} \cdot x_{b}-y_{a} \cdot y_{b}\right)}{c_{a} \cdot c_{b}}$
$\sin \left(\alpha_{a}+\alpha_{b}\right)=\frac{\left(x_{a} \cdot y_{b}+y_{a} \cdot x_{b}\right)}{c_{a} \cdot c_{b}}$
$\sin \left(\beta_{a}+\beta_{b}\right)=\frac{1}{r_{a}^{\prime} \cdot r_{b}^{\prime}}\left(c_{a} \cdot z_{b}+z_{a} \cdot c_{b}\right)$
$x^{\prime}=\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot\left(c_{a} \cdot c_{b}-z_{a} \cdot z_{b}\right) \cdot \frac{\left(x_{a} \cdot x_{b}-y_{a} \cdot y_{b}\right)}{c_{a} \cdot c_{b}}$
$y^{\prime}=\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot\left(c_{a} \cdot c_{b}-z_{a} \cdot z_{b}\right) \cdot \frac{\left(x_{a} \cdot y_{b}+y_{a} \cdot x_{b}\right)}{c_{a} \cdot c_{b}}$
$z^{\prime}=\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot\left(c_{a} \cdot z_{b}+z_{a} \cdot c_{b}\right)$
$t^{\prime}=r_{a} \cdot r_{b} \cdot \sin \left(\gamma_{a}+\gamma_{b}\right)=r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}$
(2) If $c_{a}=0, c_{b} \neq 0, r_{b}^{\prime} \cdot r_{b}^{\prime} \neq 0$ then $\alpha_{a}=0$
$\beta_{a}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{a}\right), \quad\left(x_{a}=0, y_{a}=0\right)$
$x^{\prime}=-\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{x_{b}}{c_{b}}$
$y^{\prime}=-\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{y_{b}}{c_{b}}$
$z^{\prime}=\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot c_{b}$
$t^{\prime}=r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}$
(3) If $c_{a} \neq 0, c_{b}=0, r_{b}^{\prime} \cdot r_{b}^{\prime} \neq 0$ then $\alpha_{b}=0$
$\beta_{b}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{b}\right) \quad\left(x_{b}=0, y_{b}=0\right)$
$x^{\prime}=-\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{x_{a}}{c_{a}}$
$y^{\prime}=-\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{y_{a}}{c_{a}}$
$z^{\prime}=\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{b} \cdot c_{a}$
$t^{\prime}=r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}$
(4) If $c_{a}=0$ and $c_{b}=0 ; r_{a}^{\prime} \cdot r^{\prime}{ }_{b} \neq 0$ then $\alpha_{a}=0, \alpha_{b}=0$
$\beta_{a}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{a}\right), \beta_{b}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{b}\right)$
$x_{a}=0 y_{a}=0, x_{b}=0 y_{b}=0$
So $\beta_{a}+\beta_{b}=0$ or $\pm \pi$
In this case note that $r_{a}^{\prime} \cdot r_{b}^{\prime}=z_{a} \cdot z_{b}$
$x^{\prime}=-\frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b}=-R^{\prime} \cdot \operatorname{sign}\left(z_{a} \cdot z_{b}\right)$
$y^{\prime}=0$
$z^{\prime}=0$
$t^{\prime}=r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}$
(5) If $r_{a}^{\prime} \cdot r_{b}^{\prime}=0 ; r_{b}^{\prime} \neq 0 ; \alpha_{a}=0, \beta_{a}=0$
$x^{\prime}=R^{\prime} \cdot \cos \left(\beta_{b}\right)=\frac{R^{\prime}}{r_{b}^{\prime}} \cdot x_{b}$
$y^{\prime}=R^{\prime} \cdot \cos \left(\beta_{b}\right) \cdot \sin \left(\alpha_{b}\right)=\frac{R^{\prime}}{r_{b}^{\prime}} \cdot y_{b}$
$z^{\prime}=R^{\prime} \cdot \sin \left(\beta_{b}\right)=\frac{R^{\prime}}{r_{b}^{\prime}} \cdot z_{b}$
$t^{\prime}=r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}$
(6) If $r_{a}^{\prime} \cdot r^{\prime}{ }_{b}=0 ; r_{a}^{\prime} \neq 0 ; \alpha_{b}=0, \beta_{b}=0$
$x^{\prime}=R^{\prime} \cdot \cos \left(\beta_{a}\right)=\frac{R^{\prime}}{r_{a}^{\prime}} \cdot x_{a}$
$y^{\prime}=R^{\prime} \cdot \cos \left(\beta_{a}\right) \cdot \sin \left(\alpha_{a}\right)=\frac{R^{\prime}}{r_{a}^{\prime}} \cdot y_{a}$
$z^{\prime}=R^{\prime} \cdot \sin \left(\beta_{b}\right)=\frac{R^{\prime}}{r_{a}^{\prime}} \cdot z_{a}$
$t^{\prime}=r_{a}^{\prime} \cdot t_{b}+r_{b}{ }_{b} \cdot t_{a}$
(7) If $r_{a}^{\prime} \cdot r_{b}^{\prime}=0 ; \alpha_{a}=0, \alpha_{b}=0 ;$ and $\beta_{a}=\beta_{b}=0$
in this case $\gamma_{a}+\gamma_{b}=0$ or $\pm \pi$; so:

$$
\begin{aligned}
& x^{\prime}=\left|t_{a} \cdot t_{b}\right| \\
& y^{\prime}=0 \\
& z^{\prime}=0 \\
& t^{\prime}=0
\end{aligned}
$$

The generic case (1) of the 4 d algebraic product of $s_{a} \cdot s_{b}$ is differentiable. The other cases are limit case and are also differentiable. Limit case (4) may be an objectionable limit case, but is the same questionable problem we have seen above for the division in 3d; the differential depends on the z_{a} and z_{b} sign.

The algebraic form of $s^{\prime}=\frac{1}{s}$:
given:
$r=\sqrt{x^{2}+y^{2}+z^{2}+t^{2}} \neq 0$
$s^{\prime}=\frac{1}{s}=\frac{1}{r^{2}}(x-\vec{j} \cdot y-\vec{k} \cdot z-\vec{h} \cdot t)$
and it is differentiable.
The algebraic form of $s^{\prime}=\frac{s_{a}}{s_{b}}$:
Definitions:
$r_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}+t_{a}^{2}}$
$r_{a}^{\prime}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}} \quad c_{a}=\sqrt{x_{a}^{2}+y_{a}^{2}}$
$r_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}+t_{b}^{2}} \neq 0$
$r^{\prime}{ }_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}} \quad c_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}}$
$\frac{1}{s_{b}}=\frac{1}{r_{b}^{2}} \cdot\left(x_{b}-\vec{j} \cdot y_{b}-\vec{k} \cdot z_{b}-\vec{h} \cdot t_{b}\right)$
$\frac{s_{a}}{s_{b}}=\left(x_{a}+\vec{j} \cdot y_{a}+\vec{k} \cdot z_{a}+\vec{h} \cdot t_{a}\right) \cdot\left[\frac{1}{r_{b}^{2}} \cdot\left(x_{b}-\vec{j} \cdot y_{b}-\vec{k} \cdot z_{b}-\vec{h} \cdot t_{b}\right)\right]$
Also here we have to analyze 7 cases:
(1a) Generic case: $c_{a} \neq 0, c_{b} \neq 0 ; r_{a}^{\prime} \cdot r_{b}^{\prime} \neq 0$
$r_{a}^{\prime}=\sqrt{x_{a}^{2}+y_{a}^{2}+z_{a}^{2}} \quad r_{b}{ }_{b}=\sqrt{x_{b}^{2}+y_{b}^{2}+z_{b}^{2}}$
$R^{\prime}=\left|r^{\prime} \cdot r^{\prime}{ }_{b}+t_{a} \cdot t_{b}\right|$
$x^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot\left(c_{a} \cdot c_{b}+z_{a} \cdot z_{b}\right) \cdot \frac{\left(x_{a} \cdot x_{b}+y_{a} \cdot y_{b}\right)}{c_{a} \cdot c_{b}}$
$y^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot\left(c_{a} \cdot c_{b}+z_{a} \cdot z_{b}\right) \cdot \frac{\left(-x_{a} \cdot y_{b}+y_{a} \cdot x_{b}\right)}{c_{a} \cdot c_{b}}$
$z^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot\left(-c_{a} \cdot z_{b}+z_{a} \cdot c_{b}\right)$
$t^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(-r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}\right)$
(2a) If $c_{a}=0, c_{b} \neq 0, r_{a}^{\prime} \cdot r_{b}^{\prime} \neq 0$ then $\alpha_{a}=0$
$\beta_{a}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{a}\right) ;\left(x_{a}=0 \quad y_{a}=0\right)$
$x^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{x_{b}}{c_{b}}$
$y^{\prime}=-\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{y_{b}}{c_{b}}$
$z^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot c_{b}$
$t^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(-r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}\right)$
(3a) If $c_{a} \neq 0, c_{b}=0, r_{a}^{\prime} \cdot r_{b}^{\prime} \neq 0$ then $\alpha_{b}=0$
$\beta_{b}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{b}\right) ;\left(x_{b}=0 \quad y_{b}=0\right)$
you can observe that in this case $z_{b} / r_{b}^{\prime}=\operatorname{sign}\left(z_{b}\right)$
$x^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{x_{a}}{c_{a}}$
$y^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{a} \cdot z_{b} \cdot \frac{y_{a}}{c_{a}}$
$z^{\prime}=-\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime} \cdot r_{b}^{\prime}} \cdot z_{b} \cdot c_{a}$
$t^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(-r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}\right)$
(4a) If $c_{a}=0$ and $c_{b}=0, r_{a}^{\prime} \cdot r^{\prime}{ }_{b} \neq 0$ then $\alpha_{a}=\alpha_{b}=0$
$\beta_{a}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{a}\right), \beta_{b}=\frac{\pi}{2} \cdot \operatorname{sign}\left(z_{b}\right)$
$\left(x_{a}=0 ; y_{a}=0\right),\left(x_{b}=0 ; y_{b}=0\right)$
So $\beta_{a}-\beta_{b}=0$ or $\pm \pi$
$x^{\prime}=\frac{1}{r_{b}^{2}} \cdot R^{\prime} \cdot \operatorname{sign}\left(z_{a} \cdot z_{b}\right)$
$y^{\prime}=0$
$z^{\prime}=0$
$t^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(-r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}\right)$
(5a) If $r_{a}^{\prime} \cdot r^{\prime}{ }_{b}=0 ; r_{b}^{\prime} \neq 0 ; c_{b} \neq 0 ; \alpha_{a}=0, \beta_{a}=0$
$x^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{b}^{\prime}} \cdot x_{b}$
$y^{\prime}=-\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{b}^{\prime}} \cdot y_{b}$
$z^{\prime}=-\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{b}^{\prime}} \cdot z_{b}$
$t^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(-r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}\right)$
(6a) If $r_{a}^{\prime} \cdot r_{b}^{\prime}=0 ; r_{a}^{\prime} \neq 0 ; c_{a} \neq 0 ; \alpha_{b}=0, \beta_{b}=0$
$x^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime}} \cdot x_{a}$
$y^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime}} \cdot y_{a}$
$z^{\prime}=\frac{1}{r_{b}^{2}} \cdot \frac{R^{\prime}}{r_{a}^{\prime}} \cdot z_{a}$
$t^{\prime}=\frac{1}{r_{b}^{2}} \cdot\left(-r_{a}^{\prime} \cdot t_{b}+r_{b}^{\prime} \cdot t_{a}\right)$
(7a) If $r_{a}^{\prime} \cdot r_{b}^{\prime}=0 ; \alpha_{a}=\alpha_{b}=0$ and $\beta_{a}=\beta_{b}=0$ in this case $\gamma_{a}-\gamma_{b}=0$ or $\pm \pi$
$x^{\prime}=\left|\frac{t_{a}}{t_{b}}\right|$
$y^{\prime}=0$
$z^{\prime}=0$
$t^{\prime}=0$
The generic case (1a) of the 4 d algebraic division s_{a} / s_{b} is differentiable. The other cases are limit case and are also differentiable.

Limit case (4a) may be an objectionable limit case, but, again, is the same questionable problem we have seen above for the division in 3d; the differential depends on the z_{a} and z_{b} sign.
Appendix B: 3d core visual basic source code
'reference to the code $3 \mathrm{~d}-2.4 \mathrm{~g}$ in appendix of paper [2]
'The algebric product
Function MulA_3d(a As Complex3d, b As Complex3d) As Complex3d

Dim Ca As Double, Cb As Double, R As Complex3d
If Near0(a.R) $=0$ Or Near0(b.R) $=0$ Then Go To Set_To_Zero
$\mathrm{Ca}=\mathrm{Sqr}(\mathrm{a} \cdot \mathrm{X} \wedge 2+\mathrm{a} . \mathrm{Y} \wedge 2)$
$\mathrm{Cb}=\mathrm{Sqr}\left(\mathrm{b} . \mathrm{X}^{\wedge} 2+\mathrm{b} . \mathrm{Y}^{\wedge}{ }^{2}\right)$
If Near0(Ca) <> 0 And Near0(Cb) <> 0 Then
'generic case
R. $\mathrm{X}=\left(\mathrm{Ca}{ }^{\star} \mathrm{Cb}-\mathrm{a} . \mathrm{Z}^{\star} \mathrm{b} \cdot \mathrm{Z}\right)^{\star}\left(\mathrm{a} . \mathrm{X}^{\star} \mathrm{b} \cdot \mathrm{X}-\mathrm{a} . \mathrm{Y}^{\star} \mathrm{b} . \mathrm{Y}\right) /\left(\mathrm{Ca}{ }^{\star} \mathrm{Cb}\right)$
R. $Y=\left(C a * C b-a . Z^{*} b . Z\right)^{*}\left(a . X^{*} b . Y+a . Y^{*} b \cdot X\right) /(C a * C b)$
$R . Z=\left(C a^{*} b . Z+C b^{*} a . Z\right)$
GoTo To_End
End If

If $\operatorname{NearO}(\mathrm{Ca})=0$ And $\operatorname{Near} 0(\mathrm{Cb})<>0$ Then
R.X $=-a \cdot Z^{*} b \cdot Z^{*} b \cdot X / C b$
R. $Y=-a . Z^{\star} b . Z^{\star} b . Y / C b$
R. $Z=a \cdot Z^{*} C b$

GoTo To_End
End If

If Near0(Cb) $=0$ And Near0(Ca) $<>0$ Then
R. $X=-a \cdot Z^{\star} b \cdot Z^{\star} a \cdot X / C a$
R. $Y=-a . Z^{*} b . Z^{*}$ a. $Y / C a$
$\mathrm{R} . \mathrm{Z}=\mathrm{b} \cdot \mathrm{Z}^{*} \mathrm{Ca}$
GoTo To_End
End If
$R . X=-a \cdot Z^{*} b \cdot Z$
R. $Y=0$
$R . Z=0$

To_End:
Calc_Vector_Notation R 'reference to 3d sub code...
MulA_3d = R
Exit Function
Set_To_Zero:
R. $\mathrm{X}=0$
R. $Y=0$
$R . Z=0$
R. $R=0$
R.Alfa $=0$
R.Beta $=0$

MulA_3d = R
End Function
'The algebric division
Function DivA_3d(a As Complex3d, b As Complex3d) As

Complex3d

Dim Ca As Double, Cb As Double, R As Complex3d, Rb As Double If Near0(a.R) $=0$ Or Near0(b.R) $=0$ Then GoTo Set_To_Zero

$$
\begin{aligned}
& \mathrm{Rb}=1 / \operatorname{Sqr}\left(\mathrm{b} \cdot \mathrm{X}^{\wedge} 2+\mathrm{b} \cdot \mathrm{Y}^{\wedge} 2+\mathrm{b} \cdot \mathrm{Z}^{\wedge} 2\right) \\
& \mathrm{Ca}=\operatorname{Sqr}\left(\mathrm{a} \cdot \mathrm{X}^{\wedge} 2+\mathrm{a} . \mathrm{Y}^{\wedge} 2\right) \\
& \mathrm{Cb}=\operatorname{Sqr}\left(\mathrm{b} \cdot \mathrm{X}^{\wedge} 2+\mathrm{b} \cdot \mathrm{Y}^{\wedge} 2\right)
\end{aligned}
$$

If Near0(Ca) <> 0 And Near0(Cb) <> 0 Then 'generic case
R. $\mathrm{X}=\mathrm{Rb} \wedge 2^{\star}\left(\mathrm{Ca}^{\star} \mathrm{Cb}+\mathrm{a} \cdot \mathrm{Z}^{\star} \mathrm{b} \cdot \mathrm{Z}\right)^{\star}\left(\mathrm{a} \cdot \mathrm{X}^{\star} \mathrm{b} \cdot \mathrm{X}+\mathrm{a} \cdot \mathrm{Y}^{\star} \mathrm{b} \cdot \mathrm{Y}\right) /\left(\mathrm{Ca}{ }^{\star} \mathrm{Cb}\right)$
$R . Y=R b^{\wedge} 2^{\star}\left(\mathrm{Ca}^{\star} \mathrm{Cb}+\mathrm{a} \cdot \mathrm{Z}^{\star} \mathrm{b} \cdot \mathrm{Z}\right)^{\star}\left(-\mathrm{a} \cdot \mathrm{X}^{\star} \mathrm{b} \cdot \mathrm{Y}+\mathrm{a} \cdot \mathrm{Y}^{\star} \mathrm{b} \cdot \mathrm{X}\right) /\left(\mathrm{Ca}{ }^{\star} \mathrm{Cb}\right)$
$\mathrm{R} . \mathrm{Z}=\mathrm{Rb} \wedge 2^{\star}\left(-\mathrm{Ca}^{\star} \mathrm{b} \cdot \mathrm{Z}+\mathrm{Cb}^{\star} \mathrm{a} \cdot \mathrm{Z}\right)$
GoTo To_End
End If

If Near0(Ca) $=0$ And $\operatorname{Near0(Cb)~}<>0$ Then
R. $\mathrm{X}=\mathrm{Rb}{ }^{\wedge} 2^{*} \mathrm{a} \cdot \mathrm{Z}^{*} \mathrm{~b} \cdot \mathrm{Z}^{*} \mathrm{~b} \cdot \mathrm{X} / \mathrm{Cb}$
R. $Y=-R b \wedge 2^{*} a . Z^{*} b . Z^{*} b . Y / C b$
$R . Z=R b \wedge 2^{*} a \cdot Z^{\star} C b$
GoTo To_End
End If

If Near0(Cb) $=0$ And Near0(Ca) $<>0$ Then
$R . X=\operatorname{Sgn}(b \cdot Z)^{*} a \cdot Z^{*} a \cdot X / C a$
$R . Y=\operatorname{Sgn}(b . Z)^{*} a \cdot Z^{*} a . Y / C a$
$R . Z=-\operatorname{Sgn}(b . Z)^{*} \mathrm{Ca}$
GoTo To_End
End If
R.X $=\mathrm{a} \cdot \mathrm{Z} / \mathrm{b} . \mathrm{Z}$
$R . Y=0$
$R . Z=0$

To_End:
Calc_Vector_Notation R 'reference to 3d sub code
DivA_3d = R
Exit Function
Set_To_Zero:
R.X $=0$
R. $Y=0$
$R . Z=0$
$R \cdot R=0$
R.Alfa $=0$
R.Beta $=0$

DivA_3d = R
End Function
Appendix C: 4 d core visual basic source code.
Option Compare Database
Option Explicit
\qquad
' CORE 4d ALGEBRA
' V2.9 OPTIMIZED
'---------------------------------------1
'Public Const $\mathrm{Pi}=3.14159265358979$
\qquad
'AVOID THE USE OF SMALL NUMBER IN SIMULATION (OR VERY BIG NUMBERS)
'THE PRECISION IS LIMITED, THE MANTISSA HAVE 15 DIGIT
'Public Const MaxDigit = 12, AsZero $=10 \wedge-12$
'We can round the results of calculus or not
Private Const Round_Results $=$ True
'---
'The definition of the Complex4d type
Type Complex4d
X As Double
Y As Double
Z As Double
T As Double
R As Double
Alfa As Double
Beta As Double
Gamma As Double
End Type
'The initialization number in cartesian notation
Function Init_Algebric_4d(X As Double, Y As Double, Z As Double, T As Double) As Complex4d

Dim R As Complex4d
$R \cdot X=X$
$R . Y=Y$
$R \cdot Z=Z$
$R . T=T$
Calc_Vector_Notation R
Init_Algebric_4d $=\mathrm{R}$
End Function
'The initialization number in vector notation
Function Init_Vector_4d(R As Double, Alfa As Double, Beta As Double, Gamma As Double) As Complex4d

Dim S As Complex4d
$S . R=R$
S.Alfa $=$ Alfa
S.Beta $=$ Beta
S.Gamma = Gamma

To_Algebric_Notation S
Init_Vector_4d = S
End Function
'The Sum A+B
Function Sum_4d(a As Complex4d, b As Complex4d) As Complex4d

Dim R As Complex4d
'Standard sum
$R \cdot X=a \cdot X+b \cdot X$
R. $Y=a . Y+b . Y$
$R . Z=a \cdot Z+b . Z$
R. $\mathrm{T}=\mathrm{a} . \mathrm{T}+\mathrm{b} . \mathrm{T}$

Calc_Vector_Notation R
Sum_4d=R
End Function
'The Difference A-B
Function Diff_4d(a As Complex4d, b As Complex4d) As Complex4d

Dim R As Complex4d
'Standard diff
$R \cdot X=a \cdot X-b \cdot X$
$R . Y=a . Y-b . Y$
$R . Z=a . Z-b . Z$

$\mathrm{R} . \mathrm{T}=\mathrm{a} . \mathrm{T}-\mathrm{b} . \mathrm{T}$	If $\operatorname{Near0}\left(\mathrm{Ra} 1{ }^{*} \mathrm{Rb} 1\right)=0$ Then
Calc_Vector_Notation R	If Near0(Ra1) $=0$ Then
Diff_4d = R	$\mathrm{Kx}=\mathrm{R} 1 / \mathrm{Rb} 1$
End Function	R. $\mathrm{X}=\mathrm{Kx}{ }^{*} \mathrm{~b} . \mathrm{X}$
	R. $\mathrm{Y}=\mathrm{Kx}{ }^{*} \mathrm{~b} . Y$
'The Product ${ }^{*}$ B	R. $\mathrm{Z}=\mathrm{Kx}{ }^{*} \mathrm{~b} . Z$
Function Mul_4d(a As Complex4d, b As Complex4d) As Complex4d	$\mathrm{R} . \mathrm{T}=\mathrm{Ra1}{ }^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*} \mathrm{a} . \mathrm{T}$ GoTo To_End
Dim R As Complex4d	Else
$\mathrm{R} \cdot \mathrm{R}=\mathrm{a} \cdot \mathrm{R}{ }^{*} \mathrm{~b} \cdot \mathrm{R}$	$\mathrm{Kx}=\mathrm{R} 1 / \mathrm{Ra} 1$
R.Alfa $=\operatorname{Modulus}(\mathrm{a}$. Alfa +b. Alfa, $2 * \mathrm{Pi})$	R.X $=\mathrm{Kx}{ }^{*}$ a. X
R.Beta $=$ Modulus $\left(\mathrm{a} \cdot \operatorname{Beta}+\mathrm{b} \cdot \operatorname{Beta}, 2{ }^{*} \mathrm{Pi}\right)$	R. $\mathrm{Y}=\mathrm{Kx}{ }^{*}$ a. Y
R.Gamma $=$ Modulus(a.Gamma + b.Gamma, $2 *$ Pi)	R. $\mathrm{Z}=\mathrm{Kx}{ }^{*} \mathrm{a} . Z$
To_Algebric_Notation R	$\mathrm{R} . \mathrm{T}=\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*} \mathrm{a} . \mathrm{T}$
Mul_4d = R	GoTo To_End
End Function	End If
	End If
'The algebric product	
Function MulA_4d(a As Complex4d, b As Complex4d) As Complex4d	If Near0(Ca) <> 0 And Near0(Cb) <> 0 Then
Dim Ca As Double, Cb As Double, R As Complex4d	'generic case
Dim Ral As Double, Rbl As Double, R1 As Double, Kx As Double	$\mathrm{Kx}=\mathrm{R} 1 /\left(\mathrm{Ra} 1^{*} \mathrm{Rb} 1\right)$
	R.X $=\mathrm{Kx}^{*}\left(\mathrm{Ca}{ }^{\star} \mathrm{Cb}-\mathrm{a} . \mathrm{Z}^{\star} \mathrm{b} \cdot \mathrm{Z}\right)^{\star}\left(\mathrm{a} \cdot \mathrm{X}^{\star} \mathrm{b} . \mathrm{X}-\mathrm{a} . \mathrm{Y}^{\star} \mathrm{b} . \mathrm{Y}\right) /\left(\mathrm{Ca}{ }^{\star} \mathrm{Cb}\right)$
If Near0(a.R) $=0$ Or Near0(b.R) $=0$ Then GoTo Set_To_Zero	R. $Y=K x^{*}\left(C a^{*} C b-a . Z^{*} \mathrm{~b} . Z\right)^{\star}\left(\mathrm{a} . \mathrm{X}^{\star} \mathrm{b} . \mathrm{Y}+\mathrm{a} . \mathrm{Y}^{\star} \mathrm{b} \cdot \mathrm{X}\right) /\left(\mathrm{Ca}{ }^{\star} \mathrm{Cb}\right)$
	$\mathrm{R} . \mathrm{Z}=\mathrm{Kx}{ }^{*}\left(\mathrm{Ca}^{*} \mathrm{~b} . \mathrm{Z}+\mathrm{Cb}^{*} \mathrm{a} . Z\right)$
$\mathrm{Ra} 1=\operatorname{Sqr}\left(\mathrm{a} \cdot \mathrm{X} \wedge 2+\mathrm{a} . \mathrm{Y}^{\wedge} 2+\mathrm{a} \cdot \mathrm{Z} \wedge\right.$ 2)	$\mathrm{R} . \mathrm{T}=\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*} \mathrm{a} . \mathrm{T}$
$\mathrm{Rb} 1=\operatorname{Sqr}\left(\mathrm{b} \cdot \mathrm{X} \wedge 2+\mathrm{b} . \mathrm{Y}^{\wedge} 2+\mathrm{b} . \mathrm{Z} \wedge 2\right)$	GoTo To_End
	End If
If $\operatorname{Near} 0(\mathrm{Ra} 1)=0$ And $\operatorname{Near} 0(\mathrm{Rb} 1)=0$ Then $' \mathrm{x}=\mathrm{y}=\mathrm{z}=0$	
$\mathrm{R} \cdot \mathrm{X}=\operatorname{Abs}\left(\mathrm{b} \cdot \mathrm{T}^{*} \mathrm{a} \cdot \mathrm{T}\right)$	If Near0(Ca) $=0$ And Near0(Cb) <> 0 Then
R. $Y=0$	$\mathrm{Kx}=\mathrm{R} 1 /\left(\mathrm{Ra} 1^{*} \mathrm{Rb} 1\right)$
$\mathrm{R} . \mathrm{Z}=0$	R. $\mathrm{X}=-\mathrm{Kx}{ }^{\star} \mathrm{a} \cdot \mathrm{Z}^{*} \mathrm{~b} \cdot \mathrm{Z}^{*} \mathrm{~b} \cdot \mathrm{X} / \mathrm{Cb}$
R. $\mathrm{T}=0$	R. $\mathrm{Y}=-\mathrm{Kx}{ }^{\star} \mathrm{a} . \mathrm{Z}^{\star} \mathrm{b} . Z^{*} \mathrm{~b} . \mathrm{Y} / \mathrm{Cb}$
GoTo To_End	R. $Z=K x^{*} \mathrm{a} . \mathrm{Z}^{*} \mathrm{Cb}$
End If	$\mathrm{R} . \mathrm{T}=\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*} \mathrm{a} . \mathrm{T}$
	GoTo To_End
$\mathrm{R} 1=\operatorname{Abs}\left(\mathrm{Ra} 1^{*} \mathrm{Rb} 1-\mathrm{a} . \mathrm{T}^{*} \mathrm{~b} . \mathrm{T}\right)$	End If
$\mathrm{Ca}=\operatorname{Sqr}\left(\mathrm{a} \cdot \mathrm{X}^{\wedge} 2+\mathrm{a} \cdot \mathrm{Y}^{\wedge} 2\right)$	If Near0(Cb) $=0$ And $\operatorname{Near0}(\mathrm{Ca})<>0$ Then
$\mathrm{Cb}=\operatorname{Sqr}(\mathrm{b} . \mathrm{X} \wedge 2+\mathrm{b} . \mathrm{Y} \wedge 2)$	$\mathrm{Kx}=\mathrm{R} 1 /(\mathrm{Ra} 1 * \mathrm{Rb} 1)$
	R.X $=-\mathrm{Kx}^{*} \mathrm{a} \cdot Z^{*} \mathrm{~b} \cdot \mathrm{Z}^{*} \mathrm{a} \cdot \mathrm{X} / \mathrm{Ca}$

If Near0(Cb) $=0$ And Near0(Ca) $=0$ And Near0(Ra1 * Rb1) $<>0$ Then
R.X $=-R 1{ }^{*} \operatorname{Sgn}\left(\mathrm{a} . Z^{*} \mathrm{~b} . Z\right)$
R. $Y=0$
R. $Z=0$
$\mathrm{R} . \mathrm{T}=\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*} \mathrm{a} . \mathrm{T}$
GoTo To_End
End If

To_End:
Calc_Vector_Notation R
MulA_4d = R
Exit Function
Set_To_Zero:
R. $\mathrm{X}=0$
R. $Y=0$
R. $Z=0$
R.T $=0$
R.R $=0$
R.Alfa $=0$
R.Beta $=0$
R.Gamma $=0$

MulA_4d = R
End Function
'The Division A/B
Function Div_4d(a As Complex4d, b As Complex4d) As Complex4d

Dim R As Complex4d
$R . R=a \cdot R / b . R$
R.Alfa $=$ Modulus(a.Alfa $-\mathrm{b} . \mathrm{Alfa}, 2 * \mathrm{Pi}$)
R.Beta $=$ Modulus(a.Beta -b. Beta, $2 *$ Pi)
R.Gamma $=$ Modulus(a.Gamma - b.Gamma, $2 \star$ Pi)

To_Algebric_Notation R
Div_4d = R

End Function
'The algebric division
Function DivA_4d(a As Complex4d, b As Complex4d) As Complex4d

Dim Ca As Double, Cb As Double, R As Complex4d
Dim Ra1 As Double, Rb1 As Double, R1 As Double, Rb As Double, Kx As Double

If Near0(a.R) $=0$ Or Near0(b.R) $=0$ Then GoTo Set_To_Zero
$\mathrm{Rb}=1 / \mathrm{b} . \mathrm{R}$
$\mathrm{Ra} 1=\operatorname{Sqr}\left(\mathrm{a} \cdot \mathrm{X}^{\wedge} 2+\mathrm{a} . \mathrm{Y}^{\wedge} 2+\mathrm{a} \cdot \mathrm{Z}^{\wedge}{ }^{2}\right)$
$\mathrm{Rb} 1=\operatorname{Sqr}\left(\mathrm{b} . \mathrm{X}^{\wedge} 2+\mathrm{b} . \mathrm{Y}^{\wedge} 2+\mathrm{b} . \mathrm{Z}^{\wedge}{ }^{\wedge}\right)$

If $\operatorname{Near} 0(\mathrm{Ra} 1)=0$ And $\operatorname{Near0(Rb1)=0} 0$ Then $' \mathrm{x}=\mathrm{y}=\mathrm{z}=0$
R.X $=\operatorname{Abs}(\mathrm{a} . \mathrm{T} / \mathrm{b} . \mathrm{T})$
R. $\mathrm{Y}=0$
$R . Z=0$
R.T $=0$

GoTo To_End
End If
$\mathrm{R} 1=\operatorname{Abs}\left(\mathrm{Ra} 1^{*} \mathrm{Rb} 1+\mathrm{a} . \mathrm{T}^{*} \mathrm{~b} . \mathrm{T}\right)$
$\mathrm{Ca}=\operatorname{Sqr}\left(\mathrm{a} \cdot \mathrm{X} \wedge 2+\mathrm{a} \cdot \mathrm{Y}^{\wedge} \mathrm{A}^{2}\right)$
$\mathrm{Cb}=\mathrm{Sqr}\left(\mathrm{b} . \mathrm{X} \wedge 2+\mathrm{b} . \mathrm{Y}^{\wedge} 2\right)$

If $\operatorname{Near0(Ral*Rb1)=0~Then~}$
If $\operatorname{Near0(Ra1)=0}$ Then
$\mathrm{Kx}=\mathrm{Rb} \wedge 2{ }^{*} \mathrm{R} 1 / \mathrm{Rb} 1$
R.X $=K x{ }^{*}$ b. X
R. $Y=-K x *$ b. Y
R.Z $=-K x{ }^{*} b . Z$
R.T $=\mathrm{Rb} \wedge 2^{\star}\left(-\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*}\right.$ a.T $)$

GoTo To_End
Else
$\mathrm{Kx}=\mathrm{Rb} \wedge 2^{*} \mathrm{R} 1 / \mathrm{Ra} 1$
R.X $=K x^{*}$ a. X
R. $Y=K x *$ a. Y
$R . Z=K x * a . Z$

$\mathrm{R} . \mathrm{T}=\mathrm{Rb} \wedge 2^{*}\left(-\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*} \mathrm{a} . \mathrm{T}\right)$	End If
GoTo To_End	
End If	To_End:
End If	Calc_Vector_Notation R
	DivA_4d = R
If Near0(Ca) <> 0 And Near0(Cb) <> 0 Then	Exit Function
'generic case	Set_To_Zero:
$\mathrm{Kx}=\mathrm{Rb} \wedge 2 * \mathrm{Rl} /(\mathrm{Ra} 1 * \mathrm{Rb} 1)$	R. $\mathrm{X}=0$
R.X $=\mathrm{Kx}^{*}\left(\mathrm{Ca}{ }^{*} \mathrm{Cb}+\mathrm{a} . \mathrm{Z}^{*} \mathrm{~b} . Z\right)^{*}\left(\mathrm{a} . \mathrm{X}^{*} \mathrm{~b} . \mathrm{X}+\mathrm{a} . \mathrm{Y}^{*} \mathrm{~b} . \mathrm{Y}\right) /\left(\mathrm{Ca}{ }^{*} \mathrm{Cb}\right)$	R. $\mathrm{Y}=0$
R.Y $=\mathrm{Kx}^{*}\left(\mathrm{Ca}{ }^{*} \mathrm{Cb}+\mathrm{a} . \mathrm{Z}^{*} \mathrm{~b} . Z\right)^{\star}\left(-\mathrm{a} . \mathrm{X}^{*} \mathrm{~b} . Y+\mathrm{a} . \mathrm{Y}^{*} \mathrm{~b} . \mathrm{X}\right) /\left(\mathrm{Ca}{ }^{*}\right.$	R. $\mathrm{Z}=0$
	R.T $=0$
$\mathrm{R} . \mathrm{Z}=\mathrm{Kx} *$ ($\left.-\mathrm{Ca}^{*} \mathrm{~b} . \mathrm{Z}+\mathrm{Cb}{ }^{*} \mathrm{a} . \mathrm{Z}\right)$	R.R $=0$
R.T $=\mathrm{Rb} \wedge 2^{*}\left(-\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*} \mathrm{a} . \mathrm{T}\right)$	R.Alfa $=0$
GoTo To_End	R.Beta $=0$
End If	R. $\mathrm{Gamma}=0$
	DivA_4d = R
If Near0(Ca) $=0$ And $\operatorname{Near0}(\mathrm{Cb})<>0$ Then	End Function
$\mathrm{Kx}=\mathrm{Rb} \wedge 2^{*} \mathrm{R} 1 /(\mathrm{Ra} 1 * \mathrm{Rb} 1)$	
R. $\mathrm{X}=\mathrm{Kx}{ }^{*} \mathrm{a} . \mathrm{Z}^{*} \mathrm{~b} . \mathrm{Z}^{*} \mathrm{~b} . \mathrm{X} / \mathrm{Cb}$	'The 1/S
R. $\mathrm{Y}=-\mathrm{Kx}{ }^{*} \mathrm{a} . \mathrm{Z}^{*} \mathrm{~b} . \mathrm{Z}^{*} \mathrm{~b} . \mathrm{Y} / \mathrm{Cb}$	Function Inverse_4d(S As Complex4d) As Complex4d
R. $\mathrm{Z}=\mathrm{Kx}{ }^{*} \mathrm{a} . \mathrm{Z}^{*} \mathrm{Cb}$	Dim R As Complex4d
R. T $=\mathrm{Rb} \wedge 2^{*}\left(-\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb1}{ }^{*} \mathrm{a} . \mathrm{T}\right)$	R.R $=1 / \mathrm{S} . \mathrm{R}$
GoTo To_End	R.Alfa $=$ Modulus(-S.Alfa, $2 * \mathrm{Pi}$)
End If	R.Beta $=$ Modulus(-S.Beta, $2 *$ Pi)
	R.Gamma $=$ Modulus(-S.Gamma, $2 *$ Pi)
If Near0(Cb) $=0$ And Near0(Ca) <> 0 Then	To_Algebric_Notation R
$\mathrm{Kx}=\mathrm{Rb} \wedge 2 * \mathrm{R} 1 / \mathrm{Ra} 1$	Inverse_ $4 \mathrm{~d}=\mathrm{R}$
R.X $=$ Kx ${ }^{*} \mathrm{a} . \mathrm{Z}^{*} \operatorname{Sgn}(\mathrm{~b} . Z)^{*} \mathrm{a} . \mathrm{X} / \mathrm{Ca}$	End Function
R.Y $=K x^{*} \mathrm{a} . Z^{*} \operatorname{Sgn}(\mathrm{~b} . Z)^{*} \mathrm{a} . \mathrm{Y} / \mathrm{Ca}$	
R. $\mathrm{Z}=-\mathrm{Kx} * \operatorname{Sgn}(\mathrm{~b} . Z){ }^{*} \mathrm{Ca}$	'S^X; X Real
R.T $=\mathrm{Rb} \wedge 2^{*}\left(-\mathrm{Ra} 1^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*}\right.$ a.T $)$	Function S_elev_X_4d(S As Complex4d, X As Double)
GoTo To_End	Complex4d
End If	Dim R As Complex4d
	R.R $=$ S.R^ X
If Near0(Cb) $=0$ And $\operatorname{Near0}(\mathrm{Ca})=0$ And $\operatorname{Near0}(\mathrm{Ra} 1 * \mathrm{Rbl})<>0$ Then	R.Alfa $=\operatorname{Modulus}\left(\mathrm{S} . \operatorname{Alfa}{ }^{*} \mathrm{X}, 2 * \mathrm{Pi}\right)$
R. $\mathrm{X}=\mathrm{Rb} \wedge 2^{*} \mathrm{R} 1^{*} \operatorname{Sgn}\left(\mathrm{a} . \mathrm{Z}^{*} \mathrm{~b} . \mathrm{Z}\right)$	R.Beta $=\operatorname{Modulus}\left(\right.$ S.Beta ${ }^{*} \mathrm{X}, 2{ }^{*} \mathrm{Pi}$)
R. $Y=0$	R.Gamma $=$ Modulus(S.Gamma ${ }^{*} \mathrm{X}, 2 \times$ Pi)
R. $\mathrm{Z}=0$	To_Algebric_Notation R
R. T $=\mathrm{Rb} \wedge 2^{*}\left(-\mathrm{Ra} 1{ }^{*} \mathrm{~b} . \mathrm{T}+\mathrm{Rb} 1^{*}\right.$ a.T $)$	S_elev_X_4d = R
GoTo To_End	End Function

'Square Root of S
Function Sqr_4d(S As Complex4d) As Complex4d
Dim R As Complex4d
$R . R=\operatorname{Sq}(S . R)$
R.Alfa $=\operatorname{Modulus}(S . A l f a / 2,2 * P i)$
R.Beta $=\operatorname{Modulus}($ S.Beta $/ 2,2 * \mathrm{Pi})$
R.Gamma $=\operatorname{Modulus}\left(\mathrm{S} . \mathrm{Gamma} / 2,2{ }^{*} \mathrm{Pi}\right)$

To_Algebric_Notation R
Sqr_4d = R
End Function

'Rotation and Elongation

Function Rotation_4d(S As Complex4d, dAlfa As Double, dBeta As Double, dGamma As Double, Optional dr As Double = 0) As Complex4d

Dim R As Complex4d
$R=S$
If $\operatorname{NearO}($ R.R $)=0$ And $\operatorname{Near0(dr)}=0$ Then
Rotation_4d = R
Exit Function
End If
$R \cdot R=R \cdot R+d r$
R.Alfa $=\operatorname{Modulus}\left(\mathrm{S} . \mathrm{Alfa}+\mathrm{dAlfa}, 2{ }^{*} \mathrm{Pi}\right)$
R.Beta $=$ Modulus $\left(\right.$ S.Beta + dBeta, $\left.2{ }^{*} \mathrm{Pi}\right)$
R.Gamma $=$ Modulus(S.Gamma + dGamma, $2{ }^{*} \mathrm{Pi}$)

To_Algebric_Notation R
Rotation_4d = R
End Function
'Creates ds from a vector S and dAlfa,dBeta and dr
Function Differentiate_Vector_4d(S As Complex4d, dAlfa As Double, dBeta As Double, dGamma As Double, dr As Double) As Complex4d

Dim dx As Double, dy As Double, dz As Double, dt As Double, ds As Complex4d

Dim dr1 As Double, R1 As Double
$R 1=\operatorname{Sqr}\left(S . X^{\wedge} 2+S . Y^{\wedge} 2+S . Z^{\wedge} 2\right)$
$\mathrm{dr} 1=\mathrm{dr}{ }^{*} \operatorname{Cos}($ S.Gamma $)-\mathrm{S} . \mathrm{R}^{*} \operatorname{Sin}\left(\right.$ S.Gamma) ${ }^{*}$ dGamma
$\mathrm{dt}=\mathrm{dr}^{*} \operatorname{Sin}(\mathrm{~S} . \mathrm{Gamma})+\mathrm{S} . \mathrm{R}^{*} \operatorname{Cos}(\mathrm{~S} . \mathrm{Gamma})^{*}$ dGamma
$\mathrm{dz}=\mathrm{dr} 1^{*} \operatorname{Sin}($ S.Beta $)+$ S. $\mathrm{R}^{*} \operatorname{Cos}(\text { S.Beta })^{*}$ dBeta
$\mathrm{dy}=\mathrm{dr} 1^{*} \operatorname{Cos}($ S.Beta $) * \operatorname{Sin}($ S.Alfa $)-$ S. $\mathrm{R}^{*} \operatorname{Sin}($ S.Beta $) * \operatorname{Sin}($ S.Alfa $)$

```
\({ }^{*}\) dBeta \(+\mathrm{S} . \mathrm{R} * \operatorname{Cos}(\) S. Beta \(){ }^{*} \operatorname{Cos}(\) S. Alfa \() *\) dAlfa
    \(\mathrm{dx}=\mathrm{dr} 1^{*} \operatorname{Cos}(\text { S.Beta })^{*} \operatorname{Cos}(\) S.Alfa \()-\mathrm{S} . \mathrm{R} * \operatorname{Sin}(\) S.Beta \(){ }^{*} \operatorname{Cos}(\mathrm{~S}\).
    Alfa) * dBeta \(-\mathrm{S} . \mathrm{R}^{*} \operatorname{Cos}(\text { S.Beta })^{*} \operatorname{Sin}(\text { S.Alfa })^{*}\) dAlfa
    \(\mathrm{ds}=\) Init_Algebric_4d(dx, dy, dz, dt)
    Differentiate_Vector_4d = ds
    End Function
```

 'Scalar product
 Function A_V_B_4d(a As Complex4d, b As Complex4d) As
 Double
$A _V _B _4 d=a \cdot X^{\star} b \cdot X+a . Y^{\star} b \cdot Y+a \cdot Z^{\star} b \cdot Z+a . T^{*} b . T$
End Function

'Versor of S

Function Versor_4d(S As Complex4d) As Complex4d
Dim R As Complex4d, R0 As Double
If Near0(S.R) $=0$ Then GoTo Set_To_Zero
$R=S$
$\mathrm{R} 0=\mathrm{R} \cdot \mathrm{R}$
$R \cdot R=1$
R.X = R.X / R0
R. $\mathrm{Y}=\mathrm{R} . \mathrm{Y} / \mathrm{R} 0$
$R . Z=R . Z / R 0$
R.T = R.T / R0

Versor_4d = R
Exit Function
Set_To_Zero:
R. $\mathrm{X}=0$
$R . Y=0$
$R . Z=0$
$R . T=0$
R. $R=0$
R.Alfa $=0$
R.Beta $=0$
R.Gamma $=0$

Versor_4d = R
End Function
'Return vector A along components on B axes; B new real axes
Function Project_A_on_B_4d(a As Complex4d, b As Complex4d) As Complex4d

Dim Wx As Complex4d, Wy As Complex4d, Wz As Complex4d, Wt As Complex4d, R As Complex4d, R0 As Double

Dim X As Double, Y As Double, Z As Double, T As Double
Dim BVx As Double, BVy As Double, BVz As Double, BVt As Double

If Near0(b.R) $=0$ Then GoTo Set_To_Zero
If Near0(a.R) = 0 Then GoTo Set_To_Zero
'Versors Wx, Wy and Wz the new base
$\mathrm{Wx}=$ Versor_4d(b)
'-
' Optimization
'Wy = Init_Algebric_4d(-Wy.Y, Wy.X, 0,0)
$\mathrm{Wy} \cdot \mathrm{X}=-\mathrm{Wx} . \mathrm{Y}$
$\mathrm{Wy} . \mathrm{Y}=\mathrm{Wx} . \mathrm{X}$
$\mathrm{Wy} \cdot \mathrm{Z}=0$
$\mathrm{Wy} . \mathrm{T}=0$
'Wy = Versor_4d(Wy)
$\mathrm{R} 0=\mathrm{Sqr}\left(\mathrm{Wy} \cdot \mathrm{X}^{\wedge} 2+\mathrm{Wy} \cdot \mathrm{Y} \wedge 2+\mathrm{Wy} \cdot \mathrm{Z} \wedge 2+\mathrm{Wy} \cdot \mathrm{T} \wedge 2\right)$
If Near0(R0) $=0$ Then GoTo Set_To_Zero 'New quatern is undetermine
$\mathrm{Wy} \cdot \mathrm{X}=\mathrm{Wy} \cdot \mathrm{X} / \mathrm{R} 0$
$\mathrm{Wy} . \mathrm{Y}=\mathrm{Wy} . \mathrm{Y} / \mathrm{R} 0$
'Wy.Z = Wy.Z / R0
'Wy.T = Wy.T / R0
\qquad
\qquad
'consider Wz as
'Wz = A X X B $_3 \mathrm{~d}(\mathrm{Wx}, \mathrm{Wy})+\mathrm{T}=0$
$\mathrm{Wz} . \mathrm{X}=\mathrm{Wx} . \mathrm{Y}^{*} \mathrm{Wy} . \mathrm{Z}-\mathrm{Wx}. \mathrm{Z}^{*} \mathrm{Wy} . \mathrm{Y}$
$\mathrm{Wz} . \mathrm{Y}=\mathrm{Wx} . \mathrm{Z}^{\star} \mathrm{Wy} . \mathrm{X}-\mathrm{Wx} . \mathrm{X}^{\star} \mathrm{Wy} . \mathrm{Z}$
$\mathrm{Wz} . \mathrm{Z}=\mathrm{Wx} . \mathrm{X}^{*} \mathrm{Wy} . \mathrm{Y}-\mathrm{Wx} . \mathrm{Y}^{*} \mathrm{Wy} . \mathrm{X}$
$\mathrm{Wz} . \mathrm{T}=0$
'-
'Wt: Take Wx and make it ortogonal respect to T
If Near0(Wx.T) $=0$ Then

$$
\begin{aligned}
& \mathrm{Wt} . \mathrm{X}=0 \\
& \mathrm{Wt.} . \mathrm{Y}=0
\end{aligned}
$$

$$
\mathrm{Wt} . \mathrm{Z}=0
$$

$\mathrm{Wt} . \mathrm{T}=0$
Else

$$
\mathrm{Wt} . \mathrm{X}=\mathrm{Wx} \cdot \mathrm{X}
$$

$\mathrm{Wt} . \mathrm{Y}=\mathrm{Wx} . \mathrm{Y}$
Wt.Z $=\mathrm{Wx} . \mathrm{Z}$
$W t . T=-\left(W x . X^{\wedge} 2+W x . Y^{\wedge} 2+W x . Z \wedge 2\right) / W x . T$
End If
'Wt = Versor_4d(Wt)
$\mathrm{R} 0=\operatorname{Sqr}(\mathrm{Wt} . \mathrm{X} \wedge 2+\mathrm{Wt} . \mathrm{Y} \wedge 2+\mathrm{Wt} . \mathrm{Z} \wedge 2+\mathrm{Wt} . \mathrm{T} \wedge 2)$
If Near0(R0) $=0$ Then $\mathrm{R} 0=1$ 'this do not stop the calculus
Wt.X = Wt.X / R0
$\mathrm{Wt} . \mathrm{Y}=\mathrm{Wt} . \mathrm{Y} / \mathrm{R} 0$
$\mathrm{Wt.Z}=\mathrm{Wt} . \mathrm{Z} / \mathrm{R} 0$
$\mathrm{Wt} . \mathrm{T}=\mathrm{Wt} . \mathrm{T} / \mathrm{R} 0$
'Project A on Wx, Wy, Wz, Wt
$B V x=A _V _B _4 d(a, W x)$
$B V y=A _V _B _4 d(a, W y)$
$\mathrm{BVz}=\mathrm{A}_{-} \mathrm{V} _\mathrm{B} _4 \mathrm{~d}(\mathrm{a}, \mathrm{Wz})$
$B V t=A _V _B _4 d(a, W t)$
$\mathrm{R}=$ Init_Algebric_ $4 \mathrm{~d}(\mathrm{BVx}, \mathrm{BVy}, \mathrm{BVz}, \mathrm{BVt})$
Project_A_on_B_4d = R
Exit Function
Set_To_Zero:
R. $X=0$
R. $Y=0$
$R . Z=0$
R.T $=0$
$R \cdot R=0$
R.Alfa $=0$
R.Beta $=0$
R.Gamma $=0$

Project_A_on_B_4d = R
End Function
'THE TRASFORMATION FROM CARTESIAN TO VECTOR NOTATION

Private Sub Calc_Vector_Notation(S As Complex4d)	If Round (CosBeta, MaxDigit $)=0$ Then
Dim SinGamma As Double, CosGamma As Double, R1 As Double	S.Beta $=\mathrm{Pi} / 2{ }^{*} \operatorname{Sgn}(\mathrm{~S} . \mathrm{Z})$
Dim SinBeta As Double, CosBeta As Double, SinAlfa As Double, CosAlfa As Double	S.Alfa $=0$
	Exit Sub
	End If
Check_Algebric_Zero_4d S	
	S.Beta $=\operatorname{ArcSin}($ SinBeta $)$
'Calc r	
$S . R=S q r(S . X \wedge 2+S . Y \wedge 2+S . Z \wedge 2+S . T \wedge 2)$	'Solve Alfa....
If Near0(S.R) = 0 Then GoTo Set_To_Zero	SinAlfa $=$ S.Y / (R1* CosBeta)
	CosAlfa $=$ S.X $/(\mathrm{R} 1 *$ CosBeta $)$
$\mathrm{R} 1=\mathrm{Sqr}(\mathrm{S} . \mathrm{X} \wedge 2+\mathrm{S} . \mathrm{Y} \wedge 2+\mathrm{S} . \mathrm{Z} \wedge 2)$	
'Solve Gamma....	If Round(CosAlfa, MaxDigit) $=0$ Then
	If Round(SinAlfa, MaxDigit) $=0$ Then
SinGamma $=$ S.T / S.R	S.Alfa $=0$
'SinGamma can be <=0	Else
	S.Alfa $=\mathrm{Pi} / 2{ }^{*} \mathrm{Sgn}(\mathrm{S} . \mathrm{Y})$
CosGamma $=$ R1 / S.R	End If
'CosGamma >=0 always	Else
If Round(CosGamma, MaxDigit) $=0$ Then ' $->\mathrm{R} 1=0$; considerate T	S.Alfa $=$ ArcSin(SinAlfa)
If Round(SinGamma, MaxDigit) $=0$ Then GoTo Set_To_Zero 'i.e. $\mathrm{T}=0$, and $\mathrm{R} 1=0$	If CosAlfa < 0 Then
S.Gamma $=$ Pi $/ 2 * \operatorname{Sgn}(\mathrm{~S} . \mathrm{T})$	'If CosAlfa<0 ... -> Quadrant 2 o quadrant 4
End If	If Near0(S.Alfa) <> 0 Then
	S.Alfa $=(\mathrm{Pi}-\mathrm{Abs}(\mathrm{S} . \mathrm{Alfa}))^{\text {Sgn }}$ (S.Y)
S.Gamma $=$ ArcSin(SinGamma)	Else
	S.Alfa $=\mathrm{Pi}$
If $\operatorname{Near0}(\mathrm{R} 1)=0$ Then 'pure T vector	End If
S. $\mathrm{X}=0$	End If
S. $Y=0$	End If
S. $\mathrm{Z}=0$	
S.Alfa $=0$	Exit Sub
S.Beta $=0$	Set_To_Zero:
S.Gamma $=$ Pi $/ 2 * \operatorname{Sgn}(\mathrm{~S} . \mathrm{T})$	S. $\mathrm{X}=0$
Exit Sub	S. $\mathrm{Y}=0$
End If	$S . Z=0$
	S. $\mathrm{R}=0$
'Solve Beta....	S.Alfa $=0$
SinBeta $=$ S.Z / R1	S. Beta $=0$
CosBeta $=$ Sqr $(\mathrm{S} . \mathrm{X} \wedge 2+\mathrm{S} . \mathrm{Y} \wedge 2) / \mathrm{R} 1$	S. Gamma $=0$
	End Sub

	Set_To_Zero:
'THE TRASFORMATION FROM VECTOR TO CARTESIAN	S. $\mathrm{X}=0$
NOTATION	$S . Y=0$
Private Sub To_Algebric_Notation(S As Complex4d)	S. $\mathrm{Z}=0$
Dim R1 As Double, CosBeta As Double, CosGamma As Double	S.T $=0$
If Near0(S.R) $=0$ Then GoTo Set_To_Zero	S. $\mathrm{R}=0$
	S.Alfa $=0$
'Solve X,Y,Z, T	S.Beta $=0$
S.T = S.R * Sin(S.Gamma)	S.Gamma $=0$
CosGamma $=\operatorname{Cos}(\mathrm{S} . \mathrm{Gamma})$	End Sub
If $\mathrm{Near0}(\mathrm{CosGamma})=0$ Then	Private Sub Check_Algebric_Zero_4d(S As Complex4d)
'The Vector is a pure T vector, so	S.Z = Near0(S.Z)
S. $\mathrm{Z}=0$	S.Y = Near0(S.Y)
S. $Y=0$	S. $\mathrm{X}=$ Near0(S.X)
S. $\mathrm{X}=0$	S.T = Near0(S.T)
'Alfa and Beta irrelevant, set to 0	End Sub
S.Beta $=0$	
S.Alfa $=0$	'END CORE 4d ALGEBRA
S.Gamma $=$ Pi $/ 2 * \operatorname{Sgn}(\mathrm{~S} . \mathrm{T})$	
Exit Sub	
End If	References
	1. Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212.
$\mathrm{R} 1=\mathrm{S} . \mathrm{R}{ }^{*} \mathrm{Abs}($ CosGamma)	2. Sonaglioni L (2015) A New Number Theory-Algebra Analysis. J Appl Computat Math 4: 267.
	3. Walker MJ (1955) Quaternions as 4-Vectors. Am J Phys 24:515.
'Solve Alfa, Beta	4. Stephenson RJ (1966) Development of Vector Analysis from Quaternions. Am J Phys 34: 194.
S. $Z=R 1{ }^{*} \operatorname{Sin}($ S.Beta $)$	
CosBeta $=\operatorname{Cos}($ S.Beta $)$	
If Near0 $(\operatorname{CosBeta})=0$ Then	
$S . Y=0$	
S. $\mathrm{X}=0$	
S.Alfa $=0$	
Else	
$\mathrm{S} . \mathrm{Y}=\mathrm{R} 1{ }^{*}$ CosBeta ${ }^{*} \operatorname{Sin}$ (S.Alfa)	
S. $\mathrm{X}=\mathrm{R} 1{ }^{*} \operatorname{CosBeta}{ }^{*} \operatorname{Cos}($ S.Alfa $)$	
End If	
Calc_Vector_Notation S	
Exit Sub	

[^0]: *Corresponding author: Sonaglioni L, Free Professionist, Italy, Tel: 388-0579470; E-mail: luca.sonaglioni@hotmail.com

 Received February 18, 2016; Accepted February 27, 2016; Published March 03, 2016

 Citation: Sonaglioni L (2016) A New Number Theory-Algebra Analysis II. J Appl Computat Math 5: 289. doi:10.4172/2168-9679.1000289
 Copyright: © 2016 Sonaglioni L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

