

Open Access

A New Number Theory

Luca Sonaglioni*

Research Article

Free Professionist, Italy

Abstract

The article proposes a mathematical method that permits to treat numbers with more than 2 dimensions. The sums and the products must be done by two distinct definitions. Despite this little limitation you have the same algebra of the standard complex numbers. The limitations occur only when you have to really compute the sums and the products between numbers, not in the symbolic algebra.

The product and the sum are commutative.

Keywords: Quaternions; Number Theory; Operator theory; Algebra; Tensor methods

Definitions

Let us consider the 3d space that can be represented by the tern $\vec{u}, \vec{v}, \vec{w}$ as shown in the Figure 1

The point P can be written as: $P = (x, y, z) = \vec{u} \cdot x + \vec{v} \cdot y + \vec{w} \cdot z$

But also, using the polar notation the point P can be written as $P = r \cdot e^{j\alpha + k \cdot \beta}$

where $r = \sqrt{x^2 + y^2 + z^2}$

The operator $e^{k\beta}$ raises the lying vectors in the plane $\langle \vec{u}, \vec{v} \rangle$ of β radians along \vec{w} ;

The operator $e^{j\alpha}$ rotates the lying vectors in the plane $\langle \vec{u}, \vec{v} \rangle$ of α radians.

Definition of the sum:

1) $P_1 + P_2 = \vec{u} \cdot (x_1 + x_2) + \vec{v} \cdot (y_1 + y_2) + \vec{w} \cdot (z_1 + z_2)$ [Cartesian notation]

Definition of the product:

2) $P_1 \cdot P_2 = r_1 \cdot e^{j\alpha_1 + k \cdot \beta_1} \cdot r_2 \cdot e^{j\alpha_2 + k \cdot \beta_2} = r_1 \cdot r_2 \cdot e^{j(\alpha_1 + \alpha_2) + k \cdot (\beta_1 + \beta_2)}$ [Polar notation]

The Number

 $s = \vec{u} \cdot x + \vec{v} \cdot y + \vec{w} \cdot z \equiv r e^{j\alpha + k\beta}$

Behaves as a complex number with three dimensions provided that:

To do the sums it must always be used the definition (1) [Cartesian notation]. To do the products it must always be used the definition (2) [polar notation]. The definition can be extended to 4 dimensions.

The relations between P=(x, y, z) and (r, α, β) are given by the following formulas:

$$z = r \cdot \sin(\beta)$$

3) $y = r \cdot \cos(\beta) \sin(\alpha)$
 $x = r \cdot \cos(\beta) \cos(\alpha)$

For $\alpha = 0$, the vector is lying in the plane $\langle \vec{u}, w \rangle$, and the polar notation coincides with a vector in the vertical rotation. The y values for $\alpha = 0$ are 0 by default. The transition from one format to another is always possible, because the tern (x, y, z) always and uniquely identifies the tern (r, α, β) through the formulas (3). The methods of symbolic computation are identical to those of the standard complex numbers.

The operations, of calculation, must always take into account the two rules (1) and (2) above for the sums and products. To assess the calculator expressions you can use the Reverse Polish Notation (RPN).

Calculus

The question is: does the calculus work?

Fixing:

 $d\vec{s} = \vec{u} \cdot dx + \vec{v} \cdot dy + \vec{w} \cdot dz$

The definition above, can't coincides at the infinitesimal to the differential of

$$ds = d(r \cdot e^{j\alpha + k\beta})$$

The calculus works using the formulas (3)

 $dz = dr \cdot \sin(\beta) + r \cdot \cos(\beta) \cdot d\beta$

*Corresponding author: Luca Sonaglioni, Free Professionist, Italy, Tel: 388-0579470; E-mail: luca.sonaglioni@hotmail.com

Received February 03, 2015; Accepted March 28, 2015; Published April 10, 2015

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212. doi:10.4172/2168-9679.1000212

Copyright: © 2015 Sonaglioni L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 $dy = dr \cdot \cos(\beta) \cdot \sin(\alpha) - r \cdot \sin(\beta) \cdot \sin(\alpha) \cdot d\beta + r \cdot \cos(\beta) \cdot \cos(\alpha) \cdot d\alpha$ $dx = dr \cdot \cos(\beta) \cdot \cos(\alpha) - r \cdot \sin(\beta) \cdot \cos(\alpha) \cdot d\beta - r \cdot \cos(\beta) \cdot \sin(\alpha) \cdot d\alpha$

Practically the polar notation is useful only to define the concept of the commutative product, necessary for the symbolic operations and for the real calculation of the product between the numbers.

As a last consideration, we can also define $s \cdot s = r^2 \cdot e^{(j\alpha + k \cdot \beta)^2}$ and in general: $s^x = r^x \cdot e^{(j\alpha + k \cdot \beta)x}$, $x \in \Re$

4 Dimensions

Let us consider s as a 4 dimension number as defined above:

$$s = \vec{u} \cdot x + \vec{v} \cdot v + \vec{w} \cdot z + \vec{q} \cdot t \equiv r \cdot e^{j \cdot \alpha + k \cdot \beta + h \cdot \lambda}$$

Is it still true the analysis above? The answer is yes, but we have to introduce the operator $e_{\vec{\tau}}^{h\cdot \lambda}$ which raises the vectors in the cube $\langle \vec{u}, \vec{v}, \vec{w} \rangle$ of λ radians along \vec{q} .

The unity vector q is orthogonal to \vec{u} , \vec{v} and \vec{w} , but it can't be represented graphically; the formulas between the two representations, one Cartesian, the other polar, can be detected from an idea given by the Figure 2.

The formulas:

$$r = \sqrt{x^{2} + y^{2} + z^{2} + t^{2}}$$

$$r' = \sqrt{x^{2} + y^{2} + z^{2}} = r \cdot |\cos(\gamma)|$$

$$\beta \in [0, 2\pi]$$

$$\beta \in [0, 2\pi]$$

$$\gamma \in [0, 2\pi]$$

$$t = r \cdot \sin(\gamma)$$

$$z = r' \cdot \sin(\beta)$$

$$r_{1} = r \cdot \sin(\beta)$$

$$y = r \cdot \cos(\beta) \sin(\alpha)$$

$$\mathbf{x} = r' \cdot \cos(\beta) \cos(\alpha)$$

Because r' can't be negative, it is clear that γ' must be reduced to $\gamma \in \left[-\pi/2, \pi/2\right]$

When $|\gamma| = \pi/2$, z=y=x=0, i.e. a pure \vec{q} vector.

Examples: Calculating the volume of a sphere

We need a little core of the new algebra, see below.

Here a couple of routines (written in Visual Basic) to estimates the volume of a sphere with the algebra above. The more Kloop is high, the more accurate is the estimation.

Sub SphereA (R0 as Double, Kloop As Integer)

Page 2 of 7

Dim dAlfa As Double, dBeta As Double, dr As Double Dim I As Long, J As Long, K As Long, KLoop As Long Dim Vol As Double, dv As Double dAlfa=2 * Pi / KLoop 'Let consider half a sphere dBeta=Pi / 2 / KLoop dr=R0 / KLoop Vol=0 $S=Init_Vector(0, 0, 0)$ For K=1 To K Loop For I=1 To K Loop For J=1 To K Loop 'Vector differential dv=S.R ^ 2 * dAlfa * Cos(S.Beta) * dBeta * dr Vol=Vol + dvS=Rotation_3d(S, dAlfa, 0) Next J S=Rotation_3d(S, 0, dBeta) Next I S.Beta=0 S=Rotation_3d(S, 0, 0, dr) Next K MsgBox "Sphere: estimated Vol: " + Format(2 * Vol) + vbCrLf + "Exact: " + Format(4 / 3 * Pi * R0 ^ 3) End Sub Sub SphereB(R0 As Double, Kloop As Integer)

Dim S As Complex3d

Dim S As Complex3d

Dim dAlfa As Double, dBeta As Double, dr As Double

Dim I As Long, J As Long, K As Long

Dim Vol As Double, dv As Complex3d

dAlfa=2 * Pi / Kloop

dBeta=Pi / 2 / Kloop

dr=R0 / Kloop

Vol=0

S=Init_Vector(0, 0, 0)

For K=1 To Kloop

'Msg "K: " + Format(K) + " di " + Format(Kloop)

For I=1 To Kloop

For J=1 To Kloop

dv=Differentiate_Vector_3d(S, dAlfa, dBeta, dr)	Function Init_Algebric(X As Double, Y As Double, Z As Double) As
dv=Project_A_on_B_3d(dv, S)	Dim R As Complex3d
Vol=Vol + dv.X * dv.Y * dv.Z	R X=X
S=Rotation_3d(S, dAlfa, 0)	R Y=Y
Next J	R 7-7
S=Rotation_3d(S, 0, dBeta)	Calc Vector Notation P
Next I	Init Algebric-P
S.Beta=0	End Function
S=Rotation_3d(S, 0, 0, dr)	The initialization number as in a Vector potation
DoEvents	The initialization number as in a vector notation
Next K	As Complex3d
ʻMsg	Dim S As Complex3d
MsgBox "Sphere: estimated Vol: " + Format($2 \times Vol$) + vbCrLf + "Exact: " + Format($4 \times 2 \times Pi \times Pol \times 3$)	S.R=R
End Sub	S.Alfa=Alfa
Hara the code written in Visual Pacic that define the sum the	S.Beta=Beta
product's, and s^x	To_Algebric_Notation S
Option Explicit	Init_Vector=S
·	End Function
' CORE 3d ALGEBRA	'The Sum A+B
' V2.4d * OPTIMIZED	Function Sum_3d (A As Complex3d, B As Complex3d) As Complex3d
·	Dim R As Complex3d
Public Const Pi=3.14159265358979	R.X=A.X + B.X
'AVOID THE USE OF SMALL NUMBER IN SIMULATION (OR	R.Y=A.Y + B.Y
VERY BIG NUMBERS)	R.Z=A.Z + B.Z
THE PRECISION IS LIMITED, THE MANTISSA HAVE 15 DIGIT	Calc_Vector_Notation R
,	Sum_3d=R
Public Const MaxDigit=12, AsZero=10 ^ -12	End Function
,	'The Difference A-B
'We can round the results of calculus or not	Function Diff_3d (A As Complex3d, B As Complex3d) As Complex3d
Private Const Round_Results=True	Dim R As Complex3d
'The definition of the Complex3d type	R.X=A.X - B.X
Type Complex3d	R.Y=A.Y - B.Y
X As Double	R.Z=A.Z - B.Z
Y As Double	Calc_Vector_Notation R
Z As Double	Diff_3d=R
R As Double	End Function
Alfa As Double	'The Product A*B
Beta As Double	Function Mul 3d (A As Complex3d, B As Complex3d) As Complex3d
End Type	Dim R As Complex3d. X As Double
'The initialization number as in an Algebric notation	R.R=A.R * B.R

Page 4 of 7

R.Alfa=Modulus (A.Alfa + B.Alfa, 2 * Pi)	Dim R As Complex3d
R.Beta=Modulus (A.Beta + B.Beta, 2 * Pi)	R.R=Sqr(S.R)
To_Algebric_Notation R	R.Alfa=S.Alfa / 2
Mul_3d=R	R.Beta=S.Beta / 2
End Function	To_Algebric_Notation R
'The Division A/B	Sqr_3d=R
Function Div_3d (A As Complex3d, B As Complex3d) As Complex3d	End Function
Dim R As Complex3d, X As Double	'Rotation and Elongation
'Fai la divisione	Function Rotation_3d(S As Complex3d, dAlfa As Double, dBeta As
R.R=A.R / B.R	Double, Optional dr As Double=0) As Complex3d
R.Alfa=Modulus(A.Alfa - B.Alfa, 2 * Pi)	Dim R As Complex3d
R.Beta=Modulus(A.Beta - B.Beta, 2 * Pi)	R=S
To_Algebric_Notation R	If Near0(R.R)=0 And Near0(dr)=0 Then
Div_3d=R	Rotation_3d=R
End Function	Exit Function
'The 1/S	End If
Function Inverse_3d(S As Complex3d) As Complex3d	R.R=R.R + dr
Dim R As Complex3d, X As Double	R.Alfa=Modulus(S.Alfa + dAlfa, 2 * Pi)
R.R=1 / S.R	R.Beta=Modulus(S.Beta + dBeta, 2 * Pi)
R.Alfa=-S.Alfa	To_Algebric_Notation R
R.Beta=-S.Beta	Rotation_3d=R
To_Algebric_Notation R	End Function
Inverse_3d=R	'Creates ds from a vector S and dAlfa,dBeta and dr
End Function	Function Differentiate_Vector_3d(S As Complex3d, dAlfa As Double, dBeta As Double, dr As Double) As Complex3d
'S^X; X Real	Dim dx As Double, dy As Double, dz As Double, ds As Complex3d
Function S_elev_X_3d(S As Complex3d, X As Double) As Complex3d	dz=dr * Sin(S.Beta) + S.R * Cos(S.Beta) * dBeta
Dim R As Complex3d	dy=dr * Cos(S.Beta) * Sin(S.Alfa) - S.R * Sin(S.Beta) * Sin(S.Alfa) *
$R.R=S.R \land X$	dBeta + S.R * Cos(S.Beta) * Cos(S.Alfa) * dAlfa
If Abs(X) <= 1 Then	dx=dr * Cos(S.Beta) * Cos(S.Alfa) - S.R * Sin(S.Beta) * Cos(S.Alfa) * dBeta - S.R * Cos(S.Beta) * Sin(S.Alfa) * dAlfa
R.Alfa=S.Alfa * X	ds=Init Algebric(dx. dv. dz)
R.Beta=S.Beta * X	Differentiate Vector 3d=ds
Else	End Function
R.Alfa=Modulus(S.Alfa * X, 2 * Pi)	'Internal product
R.Beta=Modulus(S.Beta * X, 2 * Pi)	Function A V B $3d(A As Compley3d B As Compley3d) As Double$
End If	A = V = 2d - A = V + B = A = A = A = A = A = A = A = A = A =
To_Algebric_Notation R	$A_v_D_{J_u} = A_A + A_$
S_elev_X_3d=R	'External product
End Function	External product
'Square Root of S	runcuon A_A_b_3a(A As Complex3a, B As Complex3d) As Complex3d
Function Sqr_3d(S As Complex3d) As Complex3d	Dim X As Double, Y As Double, Z As Double, R As Complex3d

X=A.Y * B.Z - A.Z * B.Y Y=A.Z * B.X - A.X * B.Z Z=A.X * B.Y - A.Y * B.X R=Init_Algebric(X, Y, Z) $A_X_B_3d=R$ End Function 'Versor of S Function Versor_3d(S As Complex3d) As Complex3d Dim R As Complex3d, R0 As Double If Near0(S.R)=0 Then GoTo Set_To_Zero R=S R0=R.R R.R=1'_____ 'Optimization 'To_Algebric_Notation R R.X=R.X / R0 R.Y=R.Y / R0R.Z=R.Z / R0 Check_Algebric_Zero R '-----Versor_3d=R **Exit Function** Set_To_Zero: R.X=0R.Y=0R.Z=0R.R=0R.Alfa=0 R.Beta=0 Versor_3d=R **End Function** 'Return vector A along components on B axes; B new Real axes Function Project_A_on_B_3d(A As Complex3d, B As Complex3d) As Complex3d Dim Wx As Complex3d, Wy As Complex3d, Wz As Complex3d, R As Complex3d, R0 As Double Dim X As Double, Y As Double, Z As Double

Dim BVx As Double, BVy As Double, BVz As Double If Near0(B.R)=0 Then GoTo Set_To_Zero If Near0(A.R)=0 Then GoTo Set_To_Zero 'Versors Wx, Wy and Wz the new base Wx=Versor_3d(B) '_____ Optimization 'Wy=Init_Algebric_3d(-Wy.Y, Wy.X, 0) Wy.X=-Wx.Y Wy.Y=Wx.X Wy.Z=0 'Wy=Versor_3d(Wy) $R0=Sqr(Wy.X \land 2 + Wy.Y \land 2)$ If Near0(R0)=0 Then R0=1 Wy.X=Wy.X / R0 Wv.Y=Wv.Y / R0 '_____ '_____ 'consider Wz as 'Wz=A_X_B_3d(Wx, Wy) Wz.X=Wx.Y * Wy.Z - Wx.Z * Wy.Y Wz.Y=Wx.Z * Wy.X - Wx.X * Wy.Z Wz.Z=Wx.X * Wy.Y - Wx.Y * Wy.X 'Wz=Versor_3d(Wz) ۱_____ 'Project A on Wx, Wy, Wz, Wt $BVx=A_V_B_3d(A, Wx)$ $BVy=A_V_B_3d(A, Wy)$ $BVz=A_V_B_3d(A, Wz)$ R=Init_Algebric(BVx, BVy, BVz) Project_A_on_B_3d=R Exit Function Set_To_Zero: R.X=0R.Y=0R.Z=0R.R=0R.Alfa=0 R.Beta=0 Project_A_on_B_3d=R

End Function

'THE TRASFORMATION FROM ALGEBRIC TO POLAR NOTATION	End If
Private Sub Calc Vector Notation(S As Complex3d)	End If
Dim SinBeta As Double, CosBeta As Double, SinAlfa As Double,	Exit Sub
CosAlfa As Double	Set_To_Zero:
Check_Algebric_Zero S	S.X=0
'Calc R	S.Y=0
$S.R=Sqr(S.X \land 2 + S.Y \land 2 + S.Z \land 2)$	S.Z=0
If Near0(S.R)=0 Then GoTo Set_To_Zero	S.R=0
'Solve Beta	S.Alta=0
SinBeta=S.Z / S.R	S.Beta=0
$CosBeta=Sqr(S.X \land 2 + S.Y \land 2) / S.R$	End Sub
'CosBeta is always >=0	THE TRASFORMATION FROM VECTOR TO ALGEBRIC
'SinBeta can be <=0	Private Sub To_Algebric_Notation(S As Complex3d)
If Round(CosBeta, MaxDigit)=0 Then	Dim CosBeta As Double
If Round(SinBeta, MaxDigit)=0 Then GoTo Set_To_Zero	If Near0(S.R)=0 Then GoTo Set_To_Zero
S.Beta=Pi / 2 * Sgn(S.Z)	'Solve X,Y,Z
Else	S.Z=S.R * Sin(S.Beta)
S.Beta=ArcSin(SinBeta)	CosBeta=Cos(S.Beta)
End If	If Near0(CosBeta)=0 Then 'a w vector!
'Solve Alfa	S.Y=0
If Round(CosBeta, MaxDigit) <> 0 Then	S.X=0
SinAlfa=S.Y / S.R / CosBeta	'If CosBeta=0 Alfa is irrelevant
CosAlfa=S.X / S.R / CosBeta	S.Alfa=0
'CosAlfa can be <=0	Else
If Round(CosAlfa, MaxDigit)=0 Then	S.Y=S.R * CosBeta * Sin(S.Alfa)
If Round(SinAlfa, MaxDigit)=0 Then	S.X=S.R * CosBeta * Cos(S.Alfa)
S.Alfa=0	End If
Else	Check_Algebric_Zero S
S.Alfa=Pi / 2 * Sgn(S.Y)	If Near0(S.Alfa)=0 And S.X<0 Then S.Alfa=Pi
End If	If Near0(S.Z)=0 And S.Beta<>0 Then S.Beta=0
Else	Exit Sub
S.Alfa=ArcSin(SinAlfa)	Set_To_Zero:
If CosAlfa < 0 Then	S.X=0
'If CosAlfa<0> Quadrant 2 o quadrant 4	S.Y=0
If Near0(S.Alfa) <> 0 Then	S.Z=0
S.Alfa=(Pi - Abs(S.Alfa)) * Sgn(S.Y)	S.R=0
Else	S.Alfa=0
S.Alfa=Pi	S.Beta=0
End If	End Sub
End If	Private Sub Check_Algebric_Zero(S As Complex3d)

Page 6 of 7

S.Z=Near0(S.Z)	Else
S.Y=Near0(S.Y)	ArcCos=Pi
S.X=Near0(S.X)	Exit Function
End Sub	End If
Function Modulus(X As Double, Y As Double) As Double	End If
Dim Resto As Double	$ArcCos=Atn(-X / Sqr(1 - X ^ 2)) + 2 * Atn(1)$
Resto=X / Y - Fix(X / Y)	End Function
If Round(Resto * Y, MaxDigit)=0 Then	Function Near0(X As Double) As Double
Modulus=0	Dim R As Double
Else	R=X
Modulus=Resto * Y	If Round_Results Then R=Round(R, MaxDigit)
End If	Near0=R
End Function	If Abs(R) <= AsZero Then
Function ArcSin(X As Double) As Double	Near0=0
If Round(Abs(X), MaxDigit)=1 Then	End If
ArcSin=Pi / 2 * Sgn(X)	End Function
Exit Function	'
End If	'END CORE 3d ALGEBRA
$\operatorname{ArcSin}=\operatorname{Atn}(X / \operatorname{Sqr}(1 - X \land 2))$	'
End Function	References
Function ArcCos(X As Double) As Double	1. Walker MJ (1894) Quaternions as 4-Vectors. Am J Phys 24: 515.
If Round(Abs(X), MaxDigit)=1 Then	 Stephenson RJ (1966) Development of Vector Analysis from Quaternions. Am J Phys 34: 194.
If $X > 0$ Then	3. Ilamed Y, Salingaros N (1981) Algebras with three anticommuting elements. I.
ArcCos=0	 Spinors and quaternions. J Math Phys 22: 2091. Silva CC, de Andrade Martins R (2002) Polar and axial vectors versus quaternions. Am J Phys 70: 958.
Exit Function	

Page 7 of 7

Exit Function