
Volume 4 • Issue 2 • 1000212
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Open AccessResearch Article

Sonaglioni, J Appl Computat Math 2015, 4:2
DOI: 10.4172/2168-9679.1000212

Keywords: Quaternions; Number Theory; Operator theory; Algebra;
Tensor methods

Definitions
Let us consider the 3d space that can be represented by the tern , ,u v w

as shown in the Figure 1

The point P can be written as: P= (, ,)x y z = u x v y w z⋅ + ⋅ + ⋅

But also, using the polar notation the point P can be written as P= j kr e α β⋅ + ⋅⋅

where 2 2 2r x y z= + +

The operator ke β⋅ raises the lying vectors in the plane ,u v

of β

radians alongw

;

The operator je α⋅ rotates the lying vectors in the plane ,u v

 of
α radians.

Definition of the sum:

1) 1 2 1 2 1 2 1 2() () ()P P u x x v y y w z z+ = ⋅ + + ⋅ + + ⋅ +

 [Cartesian notation]

Definition of the product:

2) 1 1 2 2 1 2 1 2() ()
1 2 1 2 1 2

j k j k j a kP P r e r e r r eα β α β α β β⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ +⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ [Polar notation]

The Number

α β+= ⋅ + ⋅ + ⋅ ≡

j ks u x v y w z re

Behaves as a complex number with three dimensions provided that:

To do the sums it must always be used the definition (1) [Cartesian
notation]. To do the products it must always be used the definition (2)
[polar notation]. The definition can be extended to 4 dimensions.

The relations between P= (, ,)x y z and (, ,r α β) are given by the
following formulas:

3)

 sin()
y cos()sin()
x cos()cos()

z r
r
r

β
β α
β α

= ⋅
= ⋅
= ⋅

For 0α = , the vector is lying in the plane ,

u w , and the polar
notation coincides with a vector in the vertical rotation. The y values
for 0α = are 0 by default. The transition from one format to another is
always possible, because the tern (, ,)x y z always and uniquely identifies
the tern (, ,)r α β through the formulas (3). The methods of symbolic
computation are identical to those of the standard complex numbers.

The operations, of calculation, must always take into account the
two rules (1) and (2) above for the sums and products. To assess the
calculator expressions you can use the Reverse Polish Notation (RPN).

Calculus
The question is: does the calculus work?

Fixing:

ds u dx v dy w dz= ⋅ + ⋅ + ⋅

The definition above, can’t coincides at the infinitesimal to the
differential of

()j kds d r e α β+= ⋅

The calculus works using the formulas (3)

sin() cos()dz dr r dβ β β= ⋅ + ⋅ ⋅

*Corresponding author: Luca Sonaglioni, Free Professionist, Italy, Tel: 388-
0579470; E-mail: luca.sonaglioni@hotmail.com

Received February 03, 2015; Accepted March 28, 2015; Published April 10, 2015

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4:
212. doi:10.4172/2168-9679.1000212

Copyright: © 2015 Sonaglioni L. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
The article proposes a mathematical method that permits to treat numbers with more than 2 dimensions. The

sums and the products must be done by two distinct definitions. Despite this little limitation you have the same
algebra of the standard complex numbers. The limitations occur only when you have to really compute the sums and
the products between numbers, not in the symbolic algebra.

The product and the sum are commutative.

A New Number Theory
Luca Sonaglioni*
Free Professionist, Italy

Figure 1: wvu ,, are unit vector in the three-dimensional space.

Journal of
Applied & Computational Mathematics

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212. doi:10.4172/2168-9679.1000212

Page 2 of 7

Volume 4 • Issue 2 • 1000212
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

cos() sin() sin() sin() cos() cos()dy dr r d r dβ α β α β β α α= ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

cos() cos() sin() cos() cos() sin()dx dr r d r dβ α β α β β α α= ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

Practically the polar notation is useful only to define the concept of
the commutative product, necessary for the symbolic operations and
for the real calculation of the product between the numbers.

As a last consideration, we can also define
() 22 j ks s r e α β⋅ + ⋅ ⋅⋅ = ⋅

and in general:
() , j k xx xs r e xα β⋅ + ⋅ ⋅= ⋅ ∈ ℜ

4 Dimensions
Let us consider s as a 4 dimension number as defined above:

j k hs u x v y w z q t r e α β λ⋅ + ⋅ + ⋅= ⋅ + ⋅ + ⋅ + ⋅ ≡ ⋅

Is it still true the analysis above? The answer is yes, but we have
to introduce the operator he λ⋅ which raises the vectors in the cube

, ,u v w

 of λ radians along q

.

The unity vector q

 is orthogonal to u

, v

 andw

, but it can’t be
represented graphically; the formulas between the two representations,
one Cartesian, the other polar, can be detected from an idea given by
the Figure 2.

The formulas:

2 2 2 2

2 2 2' cos()

r x y z t

r x y z r γ

= + + +

= + + = ⋅

[]
[]
[]

 0,2

 0,2

 0,2

α π

β π

γ π

∈

∈

∈

sin()
 ' sin()

y ' cos()sin()
x ' cos()cos()

γ
β
β α
β α

= ⋅
= ⋅
= ⋅
= ⋅

t r
z r

r
r

Because 'r can’t be negative, it is clear that γ must be reduced to
/ 2, / 2γ π π∈ −

When / 2γ π= , z=y=x=0, i.e. a pure q

 vector.

Examples: Calculating the volume of a sphere
We need a little core of the new algebra, see below.

Here a couple of routines (written in Visual Basic) to estimates the
volume of a sphere with the algebra above. The more Kloop is high, the
more accurate is the estimation.

Sub SphereA (R0 as Double, Kloop As Integer)

Dim S As Complex3d

Dim dAlfa As Double, dBeta As Double, dr As Double

Dim I As Long, J As Long, K As Long, KLoop As Long

Dim Vol As Double, dv As Double

dAlfa=2 * Pi / KLoop

'Let consider half a sphere

dBeta=Pi / 2 / KLoop

dr=R0 / KLoop

Vol=0

S=Init_Vector(0, 0, 0)

For K=1 To K Loop

For I=1 To K Loop

For J=1 To K Loop

‘Vector differential

dv=S.R ^ 2 * dAlfa * Cos(S.Beta) * dBeta * dr

Vol=Vol + dv

S=Rotation_3d(S, dAlfa, 0)

Next J

S=Rotation_3d(S, 0, dBeta)

Next I

S.Beta=0

S=Rotation_3d(S, 0, 0, dr)

Next K

MsgBox "Sphere: estimated Vol: " + Format(2 * Vol) + vbCrLf + "Exact:
" + Format(4 / 3 * Pi * R0 ^ 3)

End Sub

Sub SphereB(R0 As Double, Kloop As Integer)

Dim S As Complex3d

Dim dAlfa As Double, dBeta As Double, dr As Double

Dim I As Long, J As Long, K As Long

Dim Vol As Double, dv As Complex3d

dAlfa=2 * Pi / Kloop

dBeta=Pi / 2 / Kloop

dr=R0 / Kloop

Vol=0

S=Init_Vector(0, 0, 0)

For K=1 To Kloop

‘Msg "K: " + Format(K) + " di " + Format(Kloop)

For I=1 To Kloop

For J=1 To Kloop
Figure 2: 3D space and original vector.

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212. doi:10.4172/2168-9679.1000212

Page 3 of 7

Volume 4 • Issue 2 • 1000212
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

dv=Differentiate_Vector_3d(S, dAlfa, dBeta, dr)

dv=Project_A_on_B_3d(dv, S)

Vol=Vol + dv.X * dv.Y * dv.Z

S=Rotation_3d(S, dAlfa, 0)

Next J

S=Rotation_3d(S, 0, dBeta)

Next I

S.Beta=0

S=Rotation_3d(S, 0, 0, dr)

DoEvents

Next K

‘Msg

MsgBox "Sphere: estimated Vol: " + Format(2 * Vol) + vbCrLf + "Exact:
" + Format(4 / 3 * Pi * R0 ^ 3)

End Sub

Here the code written in Visual Basic that define the sum, the
product’s, and s^x…

Option Explicit

'-----------------------------------

' CORE 3d ALGEBRA

' V2.4d * OPTIMIZED

'-----------------------------------

Public Const Pi=3.14159265358979

'AVOID THE USE OF SMALL NUMBER IN SIMULATION (OR
VERY BIG NUMBERS)

'THE PRECISION IS LIMITED, THE MANTISSA HAVE 15 DIGIT

'

Public Const MaxDigit=12, AsZero=10 ^ -12

'

'We can round the results of calculus or not

Private Const Round_Results=True

'The definition of the Complex3d type

Type Complex3d

X As Double

Y As Double

Z As Double

R As Double

Alfa As Double

Beta As Double

End Type

'The initialization number as in an Algebric notation

Function Init_Algebric(X As Double, Y As Double, Z As Double) As
Complex3d

Dim R As Complex3d

R.X=X

R.Y=Y

R.Z=Z

Calc_Vector_Notation R

Init_Algebric=R

End Function

'The initialization number as in a Vector notation

Function Init_Vector(R As Double, Alfa As Double, Beta As Double)
As Complex3d

Dim S As Complex3d

S.R=R

S.Alfa=Alfa

S.Beta=Beta

To_Algebric_Notation S

Init_Vector=S

End Function

'The Sum A+B

Function Sum_3d (A As Complex3d, B As Complex3d) As Complex3d

Dim R As Complex3d

R.X=A.X + B.X

R.Y=A.Y + B.Y

R.Z=A.Z + B.Z

Calc_Vector_Notation R

Sum_3d=R

End Function

'The Difference A-B

Function Diff_3d (A As Complex3d, B As Complex3d) As Complex3d

Dim R As Complex3d

R.X=A.X - B.X

R.Y=A.Y - B.Y

R.Z=A.Z - B.Z

Calc_Vector_Notation R

Diff_3d=R

End Function

'The Product A*B

Function Mul_3d (A As Complex3d, B As Complex3d) As Complex3d

Dim R As Complex3d, X As Double

R.R=A.R * B.R

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212. doi:10.4172/2168-9679.1000212

Page 4 of 7

Volume 4 • Issue 2 • 1000212
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

R.Alfa=Modulus (A.Alfa + B.Alfa, 2 * Pi)

R.Beta=Modulus (A.Beta + B.Beta, 2 * Pi)

To_Algebric_Notation R

Mul_3d=R

End Function

'The Division A/B

Function Div_3d (A As Complex3d, B As Complex3d) As Complex3d

Dim R As Complex3d, X As Double

'Fai la divisione...

R.R=A.R / B.R

R.Alfa=Modulus(A.Alfa - B.Alfa, 2 * Pi)

R.Beta=Modulus(A.Beta - B.Beta, 2 * Pi)

To_Algebric_Notation R

Div_3d=R

End Function

'The 1/S

Function Inverse_3d(S As Complex3d) As Complex3d

Dim R As Complex3d, X As Double

R.R=1 / S.R

R.Alfa=-S.Alfa

R.Beta=-S.Beta

To_Algebric_Notation R

Inverse_3d=R

End Function

'S^X; X Real

Function S_elev_X_3d(S As Complex3d, X As Double) As Complex3d

Dim R As Complex3d

R.R=S.R ^ X

If Abs(X) <= 1 Then

R.Alfa=S.Alfa * X

R.Beta=S.Beta * X

Else

R.Alfa=Modulus(S.Alfa * X, 2 * Pi)

R.Beta=Modulus(S.Beta * X, 2 * Pi)

End If

To_Algebric_Notation R

S_elev_X_3d=R

End Function

'Square Root of S

Function Sqr_3d(S As Complex3d) As Complex3d

Dim R As Complex3d

R.R=Sqr(S.R)

R.Alfa=S.Alfa / 2

R.Beta=S.Beta / 2

To_Algebric_Notation R

Sqr_3d=R

End Function

'Rotation and Elongation

Function Rotation_3d(S As Complex3d, dAlfa As Double, dBeta As
Double, Optional dr As Double=0) As Complex3d

Dim R As Complex3d

R=S

If Near0(R.R)=0 And Near0(dr)=0 Then

Rotation_3d=R

Exit Function

End If

R.R=R.R + dr

R.Alfa=Modulus(S.Alfa + dAlfa, 2 * Pi)

R.Beta=Modulus(S.Beta + dBeta, 2 * Pi)

To_Algebric_Notation R

Rotation_3d=R

End Function

'Creates ds from a vector S and dAlfa,dBeta and dr

Function Differentiate_Vector_3d(S As Complex3d, dAlfa As Double,
dBeta As Double, dr As Double) As Complex3d

Dim dx As Double, dy As Double, dz As Double, ds As Complex3d

dz=dr * Sin(S.Beta) + S.R * Cos(S.Beta) * dBeta

dy=dr * Cos(S.Beta) * Sin(S.Alfa) - S.R * Sin(S.Beta) * Sin(S.Alfa) *
dBeta + S.R * Cos(S.Beta) * Cos(S.Alfa) * dAlfa

dx=dr * Cos(S.Beta) * Cos(S.Alfa) - S.R * Sin(S.Beta) * Cos(S.Alfa)
* dBeta - S.R * Cos(S.Beta) * Sin(S.Alfa) * dAlfa

ds=Init_Algebric(dx, dy, dz)

Differentiate_Vector_3d=ds

End Function

'Internal product

Function A_V_B_3d(A As Complex3d, B As Complex3d) As Double

A_V_B_3d=A.X * B.X + A.Y * B.Y + A.Z * B.Z

End Function

'External product

Function A_X_B_3d(A As Complex3d, B As Complex3d) As
Complex3d

Dim X As Double, Y As Double, Z As Double, R As Complex3d

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212. doi:10.4172/2168-9679.1000212

Page 5 of 7

Volume 4 • Issue 2 • 1000212
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

X=A.Y * B.Z - A.Z * B.Y

Y=A.Z * B.X - A.X * B.Z

Z=A.X * B.Y - A.Y * B.X

R=Init_Algebric(X, Y, Z)

A_X_B_3d=R

End Function

'Versor of S

Function Versor_3d(S As Complex3d) As Complex3d

Dim R As Complex3d, R0 As Double

If Near0(S.R)=0 Then GoTo Set_To_Zero

R=S

R0=R.R

R.R=1

'----------------------------------

'Optimization

'To_Algebric_Notation R

R.X=R.X / R0

R.Y=R.Y / R0

R.Z=R.Z / R0

Check_Algebric_Zero R

'-----------------------------------

Versor_3d=R

Exit Function

Set_To_Zero:

R.X=0

R.Y=0

R.Z=0

R.R=0

R.Alfa=0

R.Beta=0

Versor_3d=R

End Function

'Return vector A along components on B axes; B new Real axes

Function Project_A_on_B_3d(A As Complex3d, B As Complex3d) As
Complex3d

Dim Wx As Complex3d, Wy As Complex3d, Wz As Complex3d, R As
Complex3d, R0 As Double

Dim X As Double, Y As Double, Z As Double

Dim BVx As Double, BVy As Double, BVz As Double

If Near0(B.R)=0 Then GoTo Set_To_Zero

If Near0(A.R)=0 Then GoTo Set_To_Zero

'Versors Wx, Wy and Wz the new base

Wx=Versor_3d(B)

'--

' Optimization

'Wy=Init_Algebric_3d(-Wy.Y, Wy.X, 0)

Wy.X=-Wx.Y

Wy.Y=Wx.X

Wy.Z=0

'Wy=Versor_3d(Wy)

R0=Sqr(Wy.X ^ 2 + Wy.Y ^ 2)

If Near0(R0)=0 Then R0=1

Wy.X=Wy.X / R0

Wy.Y=Wy.Y / R0

'--

'

'--

'consider Wz as

'Wz=A_X_B_3d(Wx, Wy)

Wz.X=Wx.Y * Wy.Z - Wx.Z * Wy.Y

Wz.Y=Wx.Z * Wy.X - Wx.X * Wy.Z

Wz.Z=Wx.X * Wy.Y - Wx.Y * Wy.X

'Wz=Versor_3d(Wz)

'--

'

'Project A on Wx, Wy, Wz, Wt

BVx=A_V_B_3d(A, Wx)

BVy=A_V_B_3d(A, Wy)

BVz=A_V_B_3d(A, Wz)

R=Init_Algebric(BVx, BVy, BVz)

Project_A_on_B_3d=R

Exit Function

Set_To_Zero:

R.X=0

R.Y=0

R.Z=0

R.R=0

R.Alfa=0

R.Beta=0

Project_A_on_B_3d=R

End Function

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212. doi:10.4172/2168-9679.1000212

Page 6 of 7

Volume 4 • Issue 2 • 1000212
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

'THE TRASFORMATION FROM ALGEBRIC TO POLAR
NOTATION

Private Sub Calc_Vector_Notation(S As Complex3d)

Dim SinBeta As Double, CosBeta As Double, SinAlfa As Double,
CosAlfa As Double

Check_Algebric_Zero S

'Calc R

S.R=Sqr(S.X ^ 2 + S.Y ^ 2 + S.Z ^ 2)

If Near0(S.R)=0 Then GoTo Set_To_Zero

'Solve Beta....

SinBeta=S.Z / S.R

CosBeta=Sqr(S.X ^ 2 + S.Y ^ 2) / S.R

'CosBeta is always >=0

'SinBeta can be <=0

If Round(CosBeta, MaxDigit)=0 Then

If Round(SinBeta, MaxDigit)=0 Then GoTo Set_To_Zero

S.Beta=Pi / 2 * Sgn(S.Z)

Else

S.Beta=ArcSin(SinBeta)

End If

'Solve Alfa....

If Round(CosBeta, MaxDigit) <> 0 Then

SinAlfa=S.Y / S.R / CosBeta

CosAlfa=S.X / S.R / CosBeta

'CosAlfa can be <=0 ...

If Round(CosAlfa, MaxDigit)=0 Then

If Round(SinAlfa, MaxDigit)=0 Then

S.Alfa=0

Else

S.Alfa=Pi / 2 * Sgn(S.Y)

End If

Else

S.Alfa=ArcSin(SinAlfa)

If CosAlfa < 0 Then

'If CosAlfa<0 ... -> Quadrant 2 o quadrant 4

If Near0(S.Alfa) <> 0 Then

S.Alfa=(Pi - Abs(S.Alfa)) * Sgn(S.Y)

Else

S.Alfa=Pi

End If

End If

End If

End If

Exit Sub

Set_To_Zero:

S.X=0

S.Y=0

S.Z=0

S.R=0

S.Alfa=0

S.Beta=0

End Sub

'THE TRASFORMATION FROM VECTOR TO ALGEBRIC

Private Sub To_Algebric_Notation(S As Complex3d)

Dim CosBeta As Double

If Near0(S.R)=0 Then GoTo Set_To_Zero

'Solve X,Y,Z

S.Z=S.R * Sin(S.Beta)

CosBeta=Cos(S.Beta)

If Near0(CosBeta)=0 Then ‘a w vector!

S.Y=0

S.X=0

'If CosBeta=0 Alfa is irrelevant

S.Alfa=0

Else

S.Y=S.R * CosBeta * Sin(S.Alfa)

S.X=S.R * CosBeta * Cos(S.Alfa)

End If

Check_Algebric_Zero S

If Near0(S.Alfa)=0 And S.X<0 Then S.Alfa=Pi

If Near0(S.Z)=0 And S.Beta<>0 Then S.Beta=0

Exit Sub

Set_To_Zero:

S.X=0

S.Y=0

S.Z=0

S.R=0

S.Alfa=0

S.Beta=0

End Sub

Private Sub Check_Algebric_Zero(S As Complex3d)

Citation: Sonaglioni L (2015) A New Number Theory. J Appl Computat Math 4: 212. doi:10.4172/2168-9679.1000212

Page 7 of 7

Volume 4 • Issue 2 • 1000212
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

S.Z=Near0(S.Z)

S.Y=Near0(S.Y)

S.X=Near0(S.X)

End Sub

Function Modulus(X As Double, Y As Double) As Double

Dim Resto As Double

Resto=X / Y - Fix(X / Y)

If Round(Resto * Y, MaxDigit)=0 Then

Modulus=0

Else

Modulus=Resto * Y

End If

End Function

Function ArcSin(X As Double) As Double

If Round(Abs(X), MaxDigit)=1 Then

ArcSin=Pi / 2 * Sgn(X)

Exit Function

End If

ArcSin=Atn(X / Sqr(1 - X ^ 2))

End Function

Function ArcCos(X As Double) As Double

If Round(Abs(X), MaxDigit)=1 Then

If X > 0 Then

ArcCos=0

Exit Function

Else

ArcCos=Pi

Exit Function

End If

End If

ArcCos=Atn(-X / Sqr(1 - X ^ 2)) + 2 * Atn(1)

End Function

Function Near0(X As Double) As Double

Dim R As Double

R=X

If Round_Results Then R=Round(R, MaxDigit)

Near0=R

If Abs(R) <= AsZero Then

Near0=0

End If

End Function

'-----------------------------------

'END CORE 3d ALGEBRA

'-----------------------------------

References
1. Walker MJ (1894) Quaternions as 4-Vectors. Am J Phys 24: 515.

2. Stephenson RJ (1966) Development of Vector Analysis from Quaternions. Am
J Phys 34: 194.

3. Ilamed Y, Salingaros N (1981) Algebras with three anticommuting elements. I.
Spinors and quaternions. J Math Phys 22: 2091.

4. Silva CC, de Andrade Martins R (2002) Polar and axial vectors versus
quaternions. Am J Phys 70: 958.

http://dx.doi.org/10.1119/1.1934292
http://dx.doi.org/10.1119/1.1972885
http://dx.doi.org/10.1119/1.1972885
http://dx.doi.org/10.1063/1.524775
http://dx.doi.org/10.1063/1.524775
http://dx.doi.org/10.1119/1.1475326
http://dx.doi.org/10.1119/1.1475326

	Title
	Corresponding author
	Abstract
	Keywords
	Definitions
	Figure 1
	Figure 2
	References

