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Abstract

A concise derivation of a new multiplicative product of Schwartz distributions is pre-
sented. The new product ? is defined in the vector space A of piecewise smooth functions on
IR and all their (distributional) derivatives; it is associative, satisfies the Leibnitz rule and
reproduces the usual product of functions for regular distributions. The algebra (A,+, ?)
yields a sufficiently general setting to address some interesting problems. As an application
we consider the problem of deriving a global formulation for quantum confined systems.
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1 Introduction

Let D be the space of infinitely smooth functions t : IRn → C of compact support. The space
of Schwartz distributions D′ is the topological dual of D, i.e. the space of linear and continuous
functionals F : D → C; t →<F, t >. The space D′ provides, in many aspects, a suitable
generalization of the set of continuous functions C0. One of its most interesting properties is
that (in a suitable sense) C0 ⊂ D′ while differentiation is an internal operation in D′ [1]. On the
other hand, the major limitation of D′ is that it only displays the structure of a vector space
and not of an algebra. This is has been known since 1954 when L.Schwartz proved that [2]
there is no associative commutative algebra (A,+, ◦) satisfying the three following properties:
1) The space of distributions D′ over IRn is linearly embedded into A and f(x) ≡ 1 is the unity
in A. 2) The restriction of the product ◦ to the set of continuous functions C0 reproduces
the pointwise product of functions. 3) There exist linear derivative operators ∂xi : A → A,
i = 1, .., n satisfying the Leibnitz rule and such that their restriction to D′ coincide with the
usual distributional derivatives.

The best alternative seems to be the Colombeau product [3] which is defined in a superset
G ⊃ D′ satisfying the properties (1) and (3) with (2) holding only for C∞. Another interesting
possibility stems from a solution of the following

Problem: Determine associative algebras (A,+, ?) in the situation C∞ ⊂ A ⊂ D′ and such
that: (i) f ? g = fg, for all f, g ∈ A ∩ C0. (ii) The derivative operators in A are of the
form ∂xiA → A, i = 1, .., n and coincide with the restriction to A of the usual distributional
derivatives in D′ and, moreover, satisfy the Leibnitz rule.

In this paper we will consider the one dimensional version of this problem, i.e. the case where
A ⊂ D′(IRn) and n = 1. For this case we will construct a solution (A,+, ?), explicitly. We will
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then use the new A-setting to derive a global formulation for 1-dimensional quantum confined
systems. The details and proofs of the main results will be presented elsewhere [4]. Unfortunatly,
it is still not completly clear how these results can be generalized for higher dimensions (i.e. for
n > 1).

2 A multiplicative product of distributions

Let then C∞p be the space of piecewise smooth functions on IR, i.e. the space of functions f :
IR → C which are infinitely smooth on IR\Vf for some finite set Vf and such that limx→x±0

f (n)(x)
exists and is finite for all x0 ∈ Vf and all n ∈ N0. We define A as the set of functions in C∞p
(regarded as distributions) together with all their distributional derivatives. One can easily
prove that F ∈ A iff there is a finite set VF =sing supp F , a function f ∈ C∞p and a set of

distributions ∆(F )
w with support on w ∈ VF such that F can be written as F = f +

∑
w∈VF

∆(F )
w .

Notice that each ∆(F )
w is supported at {w} and so is a finite linear combination of Dirac deltas

and its derivatives.
The aim now is to introduce a multiplicative product in the space A. We start by considering

the restriction to A of a simple product of distributions with non-intersecting singular supports
that was introduced by L. Hörmander in [5].

Definition 2.1 (Hörmander product in A). Let F,G ∈ A be such that VF ∩VG = ∅. Let {Ωw ⊂
IR, w ∈ VF ∪ VG} be a finite covering of IR by open sets satisfying w′ /∈ Ωw, ∀w 6= w′ ∈ VF ∪ VG.
Let us also introduce the compact notation Fw = FΩw , Gw = GΩw to designate the restrictions
of F and G to the set Ωw. Then F ·G is defined by its restrictions to Ωw:

F ·G : (F ·G)Ωw = FwGw, w ∈ VF ∪ VG (2.1)

where FwGw denotes the usual product of a distribution by an infinitely smooth function.

One can prove that the definition of F ·G is independent of the particular covering {Ωw} and
yields a well defined Schwartz distribution, uniquely defined by Eq (2.1) [4, 5].

To proceed we consider the general unrestricted case, where F,G ∈ A:

Definition 2.2 (the product ?). Let F,G ∈ A. The multiplicative product ? is defined by

F ? G = lim
ε→0+

F ·Gε

where Gε(x) = G(x+ ε) is the translation of G by ε.

This product is well defined for all F,G ∈ A. The functional F ? G acts as:

< F ? G, t >= lim
ε→0+

< F ·Gε, t >

and its domain is D(IR), i.e. the limit exists for all t ∈ D(IR). Hence F ? G is a Schwartz
distribution. Its explicit form is given by:

F ? G = fg +
N∑

k=1

[
gk∆(F )

xk
+ fk−1∆(G)

xk

]
(2.2)

where {x1 < x2... < xN} = VF ∪ VG, x0 = −∞ and xN+1 = +∞. The functions fk, gk ∈ C∞,
k = 0, .., N are such that their restrictions to ]xk, xk+1[ coincide with the restrictions of f, g,
respectively. We also defined ∆(F )

xk = 0 if xk ∈ VG\VF and ∆(G)
xk = 0 if xk ∈ VF \VG.
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Let us point out that the ?-product is (i) distributive, (ii) associative but (iii) non-commu-
tative, (iv) it satisfies the Leibnitz rule, (v) it reproduces the pointwise product of functions
and (vi) it reproduces the Hörmander product for distributions with non-intersecting singular
supports. Moreover, it can be consistently extended (through Definition 2.2) to the sets A(n) of
C

(2n+1)
p -functions and their distributional derivatives up to order n+ 1 for n ∈ N0. Notice that

A(∞) = A and that Eq (2.2) is also valid for F,G ∈ A(n).

3 A global formulation of quantum confined systems

The algebra (A,+, ?) yields a sufficiently general setting to address some interesting prob-
lems. One such application is the global formulation of quantum confined systems. Let us
consider a 1-dimensional dynamical system confined to the positive half-line and described by
the Hamiltonian H = p2

2m + V (x). To keep the discussion simple we make m = 1/2, ~ = 1
and V (x) = 0. In the usual quantum formulation of the system one defines the Hilbert space
to be H = L2(IR+

0 ) and looks for self adjoint (s.a.) realizations of the Hamiltonian operator.
This is easily achieved for H = −∂2

x by imposing Dirichlet boundary conditions upon its do-
main: D(H) = {ψ ∈ L2(IR+

0 ) : ψ ∈ AC1(IR+
0 ); ψ(0) = 0} where ACn is the set of functions

with absolutely continuous n-order derivative. The well-known problems [6, 7] of this (kinemat-
ical) approach to confinement are that i) the usual momentum operator is not s.a. in L2(IR+

0 );
ii) there are many different s.a. realizations of the Hamiltonian operator and iii) there is no
straightforward translation of this approach to some other formulations of quantum mechanics
(e.g. the deformation and the de Broglie-Bohm formulations) [8].

The problem we want to address is that of formulating the quantum confined system in
the global Hilbert space L2(IR). More precisely, we want to derive a s.a., globally defined
Hamiltonian operator that dynamical confines the system to IR+

0 . Let us start by considering
the unconfined eigenvalue equation: −∂2

xψU = EψU . The confinement to the positive semi-axis
implies that the physical eigenfunctions are ψC(x) = θ(x)ψU (x) where θ is the Heaviside step
function. By substituting ψC into the free eigenvalue equation we get:

−∂2
xψC(x) = −δ′(x)ψU (x)− 2δ(x)ψ′U (x) + θ(x)EψU (x)

and by using the product ? we may rewrite this equation exclusively in terms of ψC :

−∂2
xψC(x) + δ′(x) ? ψC(x) + 2δ(x) ? ψ′C(x) = EψC(x) (3.1)

Let us define the operators (n ∈ N0)

δ̂
(n)
+ : A(n)(IR) → A(IR); ψ 7→ δ(n) ? ψ and δ̂

(n)
− : A(n)(IR) → A(IR); ψ 7→ ψ ? δ(n)

in terms of which we may rewrite Eq (3.1) as:

HCψ =
[
−∂2

x + δ̂′+(x) + 2δ̂+(x)∂x

]
ψC(x) = EψC(x)

where we defined the new confined Hamiltonian HC . One can prove that [7]: (i) The solutions
of HCψ = Eψ are exactly ψ(x) = θ(x)ψU (x) where ψU is a solution of the free equation. (ii)
The maximal domain of the operator HC is Dmax(HC) = {ψ ∈ L2(IR) : ψ(x) = θ(−x)ψ−(x) +
θ(x)ψ+(x); ψ−, ψ+ ∈ AC1(IR); ψ−(0) = ψ′−(0) = 0}. (iii) HC is not symmetric in Dmax(HC).

To refine our approach in order to derive a s.a. realization of the confined Hamiltonian we
may notice that HC can be written in the form:

HC : Dmax(HC) −→ L2(IR); ψ → −θ(−x)ψ′′−(x)− θ(x)ψ′′+(x)
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and that this operator displays the symmetric restriction: HSψ = HCψ for ψ ∈ D(HS) = {ψ ∈
Dmax(HC) : ψ+(0) = ψ′+(0) = 0}. This symmetric operator displays a 4-real parameter family
of s.a. extensions. The one associated with Dirichlet boundary conditions can be written as:

HD = −∂2
x + δ̂′−(x) + δ̂−(x)− δ̂′+(x) + δ̂+(x)

This operator is s.a. in its maximal domain and furthermore it commutes, in Dmax(HD), with
the projector operators P±ψ = θ(±x)ψ, i.e [HD, P±]ψ = 0, ∀ψ ∈ Dmax(HD). Hence, the
solutions of the energy eigenvalue equation can be diagonalized in the representation of P±. The
simultaneous eigenfunctions of HD and P± are ψ(±)

E (x) = θ(±x) sin kx for k =
√
E and so, in

this representation, all the spectral projectors of the Hamiltonian HD commute with P±. We
conclude that a wave function, originally confined to the positive (or negative) half-line, will stay
so forever. Hence, for this simple system, we have achieved a dynamical formulation of quantum
confinement. Further developments and detail proofs on this subject have been presented in [7].
Applications to the deformation quantization of confined systems have been discussed in [8].
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