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Introduction
The goal of traveling salesman problem (TSP) is to find the 

minimum Hamiltonian cycle (Min-HC) i.e., a cycle that visits each city 
once and exactly once and incurs the least length, time or cost, etc. It 
has been proven to be NP-complete [1]. There is no exact polynomial 
algorithm for TSP until NP=P. Till now the classical time complexity 
of TSP is believed as O*(2n). TSP has been extensively studied in the 
fields of combinatorial optimization and computer science due to its 
theoretical and practical values [2]. 

In mathematics, an undirected weighted graph (WG) is used to 
represent the symmetrical TSP. For a WG with n vertices, it is noted 
as G={V, E, W}, where V={v1, v2,…, vn} are the vertex sets, E=[eij]n × n 
are the edges and W=[wij]n × n are the weights of edges, vi (1 ≤ i ≤ n) is 
the vertex, eij(1 ≤ i, j ≤ n) is the edge linking the vertices vi and vj and 
wij is the weight of eij. For the symmetrical TSP, wij=wji. A cycle visiting 
each vertex once and exactly once is called a Hamiltonian cycle (HC) 
and the Min-HC is the HC with the minimum weights, i.e., optimal 
Hamiltonian cycle. 

Given an undirected WG with n vertices, the number of the HCs 
is (n-1)1/2. It is impossible to find the Min-HC by evaluating each of 
them. The exact algorithms have been designed by many researchers 
to deal with TSP. The graph search algorithms [3] are feasible for 
TSP with less than tens of cities. Considering more constraints, the 
integer programming [4,5] and dynamic programming methods [6] 
can resolve the TSP with thousands of cities on super computers. For 
larger scale of TSP, the computation time is too long. It is reported 
that a large scale of TSP with 85,900 has been resolved with Concorde 
package [6]. A 128 networked computers system is used to execute the 
task and 1.2 years was consumed. The computation time is equal to 136 
years when one computer completes the computation task. To resolve 
more complex TSP cases, the new methods are advocated to reduce the 
computation time. 

The hardness of TSP results from a large number of HCs whereas 
the number of Min-HCs is usually very small. Generally, we strive to 
find one Min-HC. With a WG, the edges in the Min-HC are hard to 
discriminate in view of their weights. In most cases, not all the small 
weighted edges are included in the Min-HC. The method to determine 

the edges in the Min-HC is valuable. Most scholars design the exact 
algorithms to search the edges, paths in the Min-HC until the Min-HC 
is found [7-9]. The results show that the exact polynomial algorithm 
does not exist until NP=P. The heuristics based on the weights usually 
search the approximations [10-12]. Different from above research, 
the frequency graph is introduced and used to determine the possible 
edges in the Min-HC. The frequency graph is computed with a set of 
optimal i-vertex paths and it includes the law of conversion between the 
optimal i-vertex paths and the Min-HC. In other words, the frequencies 
of the edges in the Min-HC are generally bigger than those of most 
of the other edges. Hence, only the edges with big frequencies above 
a threshold will be taken as the candidate edges in the Min-HC. The 
threshold is changed according to number i. When the optimal i-vertex 
paths are short, the frequencies of a few edges in the Min-HC will not 
be outstanding. If i is big enough, the frequencies of all the edges in 
the Min-HC will be much bigger than those of the other edges and the 
Min-HC is easy to find. The frequency graph has been introduced in a 
previous paper [13]. However, the change of the frequencies of the edges 
in the Min-HC is not discussed. In this paper, we use mathematical 
methods to reveal two characteristics of the frequencies of the edges 
in the Min-HC. Firstly, the frequencies of the edges in the Min-HC are 
generally bigger than the average frequency and those of most of the 
other edges in a given frequency graph. In addition, the frequencies 
of the edges in the Min-HC increase faster than the average frequency 
does according to i. Here the frequency graphs are computed with 
different set of optimal i-vertex paths (the change of the frequencies 
of the edges in the Min-HC will be shown with a series of frequency 
graphs). The edges with these characteristics are used to compose the 
Min-HC. The findings can be as the basis to design algorithms for TSP. 
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for TSP, the NOPis should be neglected in the search process. 

Only n OPis belong to the Min-HC and the other 
( ) i i

n1 C /2 OP si i n× − × −  cannot if only one Min-HC is taken into 
account. In addition, the OPjs with more vertices are combined with the 
OPis (i<j) with fewer vertices. Similarly, none of the NOPis will belong 
to an arbitrary OPj. Given all of the OPjs, the OPis emulated from the 
OPjs are the intersections between the OPis and the OPjs. These OPis 
have the potential to form the longer OPjs even the Min-HC. On the 
other hand, these OPis not in the OPjs have no chance to form the 
longer OPjs and the Min-HC. If a set of OPjs with more vertices are 
given, the frequencies of the OPis can be emulated from them. The OPis 
with bigger frequencies are included by more number of OPjs and they 
are apt to belong to the Min-HC. In the extreme case, an OPis included 
by all of the OPjs must belong to the Min-HC. Certainly, its frequency 
is maximal. In addition, the nearer the set of OPjs approach to the Min-
HC, the bigger the frequencies of the OPis in the Min-HC will be. The 
nearness represents the number of intersections between the OPjs and 
the Min-HC, i.e., the number of OPis emulated from the set of OPjs. 
On the other hand, the OPis with small or zero frequencies have little 
change to compose the Min-HC. 

The Min-HC is combined with the edges and the frequencies of 
edges are concerned. Given a set of OPis with more than 2 vertices, the 
frequencies of the edges are emulated and an FG is computed. The FG 
has the similar topological structure as the WG. In an FG, the numbers 
on the edges are their frequencies emulated from the set of OPjs. For 
TSP, the FGs in which the frequencies of the edges in the Min-HC are 
much bigger than those of the other edges are regarded. Then the edges 
in the Min-HC will be easily selected from these FGs. 

When all of the OPis are used to compute an FG, the average 
frequency of the edges is computed as formula (4) in case that the FG 
includes all of the edges. 

( )i
i-2
n-2P

1f i C= −                    (4)

It notes that the average frequency changes as a combinatorial 
number according to i. In fact, the frequencies of the edges have big 
distinctions when the FG is computed with the OPis. Though the 
number of optimal i-vertex paths increases first and then decreases, 
the number of edges they include may become less and less according 
to i. The frequencies of some edges will be much bigger than those 
of the other edges because they are included in many long OPis. In 
reverse, some edges are seldom able to compose the long OPis and their 
frequencies will be small or zero. For each edge in the Min-HC, at least 
i-1 OPis include it based on its different positions in these OPis. These 
i-1 OPis are used to compose the OP2i-2s in the Min-HC. For example 
in Figure 1, the edge (vi, vj) will be included by 3 OP4s, 4 OP5s, 5 OP6s 
and etc. 

Even if no other OPis include the edges in the Min-HC, the 
frequencies of the edges in the Min-HC will be no less than i-1. 
Furthermore, the edges in the Min-HC have more potential than the 
other edges to compose the long OPis because all the OPis approach to 

The Frequency Graph (Fg) and its Function
The relationships between the optimal i-vertex paths and the 

Min-HC are described first. Given a WG with n vertices, an HC is the 
sequence of all of the vertices and it is represented as HC=(v1, v2, …, 
vn-1, vn, v1). Each HC is combined with a set of paths named as i-vertex 
paths (Pi) (2 ≤ i ≤ n). The P with i vertices is represented as Pi=(v1, v2, …, 
vi-1, vi). The superscript i indicates the number of vertices in the Pi. It has 
two end vertices v1 and vi and the other vertices are the middle vertices. 
Similarly, the Min-HC includes the same number of Pis. It notes that 
the Pis in the Min-HC are different from most of the other Pis. The 
Pis in the MIN-HC are named as the optimal i-vertex paths (OPi). As 
the Min-HC, an optimal i-vertex path does not change short whatever 
the middle vertices are exchanged. An optimal i-vertex path with i 
vertices is noted as OPi=(v1, v2, …, vi-1, vi). In particular, OP2=P2=(v1, 
v2) represents an edge. 

Given an OPi in the MIN-HC, its two end vertices are concluded. 
In addition, the OPi is shorter than that of the other Pis with the same 
vertices in condition that their two end vertices are identical. With 
the description of the optimal i-vertex paths, the number of OPis is 
computed as formula (1) [13] for symmetrical TSP. 

( )
i

i
nP

1
2

i i
N C

× −
=                   (1)

Where 
i
nC is the number of the combinations in case that i vertices 

are selected from n vertices. The number of OPis rises first if i ≤ n/2+1 
for even number n or i ≤ (n ± 1)/2+1 for odd number n and then 
decreases according to i. There is a maximal number when i=n/2+1 for 
even number n (i=(n ± 1)/2+1 for odd number n). The ratio between 
the number of OPi+1s and OPis is computed as formula (2). 

i 1

i

P
i

P

1 -1
-1

N nr
N i

+ −
= =                   (2)

In view of formula (2), the number of OPis reaches its maximum 
when i is less than or equal to (n+1)/2. It is interesting that the ratio ri is 
related to the Harmonic Progression. The partial sum of ri is computed 
as formula (3). 

( ) ( )
2

1 -1 1 ln 1 1
-1

n

r
i

nS n n
i

γ
=

− = = − − + −     
∑                  (3)

Where ln is the sign of the nature logarithm and γ is the Euler 
constant. 

The number of Pis is i
nP / 2 , where i

nP  is the number of the 
permutations in case that i vertices are selected from n vertices. It always 
increases until i=n. The Pis is classified into OPis and non-OPis (NOP) 
whose number is equal to ( )i i

n nP / 2 1 C /2i i− × − × . It is clear that the 
number of NOPis is much bigger than that of the OPis once i is bigger 
than 4. As we know, none of these NOPis belong to the Min-HC. These 
NOPis are useless to search the Min-HC. When we design algorithms 

Figure 1: The number of OPis with the edge (vi, vj) in the Min-HC.
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the Min-HC according to i until they become the OPns. Among the n × 
(n-1)/2 OPns, n OPns turn into the Min-HC when their two end vertices 
are connected. Therefore, the edges in the Min-HC have more chance 
to compose the OPis than the other edges do, especially to compose the 
long OPis. Their frequencies changes as formula (4) and they will be 
bigger than the average frequency in most cases. On the other hand, 
the frequencies of most of the other edges will be much smaller than 
the average frequency when i is big enough. That’s their difference. 
The intrinsic reason is that they cannot compose the long OPis near 
to the Min-HC. The edges with big frequencies are included by many 
OPis and they have the potential to form the Min-HC. In the extreme 
case, the edges included by all of the OPis have the biggest frequencies 
and they belong to the Min-HC. Hence, we take the edges with big 
frequencies as the candidate edges in the Min-HC.

The Changes of the Frequencies of the Edges in the Min-Hc
Given an FG computed with a set of OPis and it includes K edges 

(K>n), the formula (5) is given as follows. Where fO represents the 
frequency of an arbitrary edge in the Min-HC and fR is the average 
frequency of the rest K-1 edges, f is the average frequency of the K 
edges. 

O

R

1
f f

K
f f
−

= −
−

                     (5)

It believes that fO is bigger than f and f is bigger than fR (it is right 
in most cases). When K is near to n × (n-1)/2, fO-f will be much bigger 
than f-fR. It says fO is much bigger than f whereas fR is near to f. In an 
ideal case, each of the OPis includes the edge in the Min-HC and fO is 
almost equal to formula (1). fR is computed as formula (6) as K=n × 
(n-1)/2. 

( ) i-2
R n-22f i C≈ −                    (6)

It is more close to formula (4) and they have a big gap with the 
maximum value of fO (see formula (1)). 

There is the other special case that fO is equal to f. For example, 
fO=f if i=2 and 3. When i=2 and 3, the fO is equal to 1 and 2 × (n-2), 
respectively. As we know, the number of OPis are always becoming 
bigger according to i until i is bigger than n/2+1 for even number n 
((n+1)/2+1 for odd number n). Some of the other edges have less and 
less chance to compose the OPis according to i. Their frequencies will 
increase slower than the average frequency does. On the other hand, 
the edges in the Min-HC have more and more possibility to compose 
the long OPis. Therefore, fO will be bigger than f in most cases according 
to i. 

The readers wonder fO may be smaller than f in some FGs. How 
can we discriminate the edges in the Min-HC? In addition, there will 
be a lot of the other edges with frequencies bigger than f, which will 
enhance the difficulty to select the right edges in the Min-HC. From 
above analysis, the edges in the Min-HC will have more chance to 
compose the OPis according to i than most of the other edges do. It is 
easy to infer that the frequencies of the edges in the Min-HC increase 
faster than the average does according to i. The edges in the Min-HC 
can be selected with respect to their frequency changes. Given two sets 
of OPi+1s and OPis, the change of the average frequency is computed as 
formula (7). 

( ) ( )i 1 i
i-2
n-2P P

1
1

i n i
f f f i C

i+

× − 
∇ = − = − − 

− 
                 (7)

Formula (7) illustrates the change between two average frequencies 
computed with the OPi+1s and OPis. The change of the frequencies 
of the edges in the Min-HC will be bigger than that computed with 
formula (7) for most of OPis. We can compute a series of FGs with the 
corresponding OPis and then find the edges whose frequencies become 
faster than the average frequency does according to i. These edges with 
these characteristics are taken as the candidate edges in the Min-HC.  

When i become big, it is hard to compute the OPis with many 
vertices. In addition, the minimum frequency of the Min-HC edges 
is concerned to be as the threshold to select the right edges. In a 
recent research [14], the frequencies of edges are computed with the 
frequency polygons with i vertices. Given a TSP with n vertices (cities), 
it includes i

nC weighted polygons with i vertices. In each of the i-vertex 
weighted polygons, there are i × (i-1)/2 edges. Hence, every edge is 
included in i-2

n-2C i-vertex weighted polygons. In each i-vertex weighted 
polygon, there exist i × (i-1)/2 OPis with i-1 edges. A frequency polygon 
is computed with these i × (i-1)/2 OPis. The frequency graph computed 
with the frequency polygons is the same as that computed with the 
OPis. In an i-vertex frequency polygon, the frequencies of edges are 
nearly determined. In addition, the number of edges in the i-vertex 
frequency polygons is less than that of the weighted polygons because 
the frequency of some edges is zero. The number of edges in an i-vertex 
weighted polygon is derived as ( )( )2 2iε+ − , where 1ε ≤ . For large 
scale of TSP and i=n, the number of edges in the frequency graph is 
nearly equal to 2n. For small number i, the number of edges in the 
i-vertex frequency polygons is taken as ai, where a ≤ 3. The average 
frequency of the edges in an i-vertex frequency polygon is computed as 
( )21

2
i

a
− . The frequency of the Min-HC edges is bigger than the average 

frequency according to i. They are close to or bigger than ( )21
2

i
a
−  in each 

of the i-vertex frequency polygons. Hence, the minimum frequency of 
the Min-HC edge is given as formula (8). 

( )2
i-2

O n-2

1
2

i
f C

a
−

≥                     (8)

Examples and Discussion
A simple Euclidean example with 10 vertices is used to give 

an overview of the method. The vertices are noted with numbers 
{0,1,2,3,4,5,6,7,8,9} and their corresponding coordinates are shown in 
Table 1. The Min-HC is (0,3,5,4,9,8,7,6,2,1,0). 

Due to the simplicity of the example, all of the OPis (4 ≤ i ≤ 10) 
are generated to compute 10 FGs. Each FG is computed with the 
OPis with the same number of vertices. The frequencies of the 10 
edges in the Min-HC are recorded according to i. The changes of the 
frequencies of these edges are lined according to i and shown in Figure 
2. The horizontal axis represents the number i, which means the FG 
is computed with the OPis. The vertical axis means the frequencies of 
the edges (in the Min-HC). The bottom bold line is the change of the 
average frequency computed with formula (4). It notes that when i is 
big enough, the FG will include smaller and smaller number of edges. 
The formula (4) should be modified. When i=8, 9, 10 in this example, 

Table 1: The vertices’ No. and their corresponding coordinates.

Vertex No. 0 1 2 3 4 5 6 7 8 9
Coordinates 82,7 91,38 83,46 71,44 64,60 68,58 83,69 87,76 74,78 71,71
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the number of edges in the FGs are 43, 38 and 25, respectively. The 
average frequencies are computed with the concrete number of edges 
but not with the 45. 

In view of Figure 2, the frequencies of the edges in the Min-HC are 
bigger than the average frequency in most cases. The frequencies of the 
edge (6,2) are always the minimum comparing with those of the other 
edges. It is smaller than the average frequency when i=4. Except i=4, 
the frequencies of all of the edges are always bigger than the average 
frequency. In addition, the frequencies of these edges are much bigger 
than the average frequency after i>4. It says the edges in the Min-HC 
have more chance to compose the OPis than most of the other edges do 
according to i. That is to say, the edges in the Min-HC are apt to form 
the OPis near to Min-HC. 

The minimum frequency of the Min-HC edge is given according to 
i in Table 2. The parameter a is computed in view of formula (8). It is 
found the parameter a is smaller than 3. In most cases, the parameter 
a is near to 2 and the minimum frequency of the Min-HC edge is 

approximately equal to ( )2
i-2
n-2

1
4

i
C

− . 

On the other hand, the frequencies of most of the other edges 
will not always be bigger than the average frequency according to i, 
especially when i is big. The edges with small frequencies are seldom 
included by the OPis and they have little chance to compose the long 
OPis and the Min-HC. Among the other 35 edges, 10 edges whose 
frequencies are the maximum when i=4 are chosen to illustrate their 
frequencies according to i. The changes of the frequencies of these 
edges are shown in Figure 3. The average frequency is also given with 
bold lines for comparisons. They are different from the change of the 
frequencies of the Min-HC edges. Before i ≤ 5, the frequencies of these 
edges are bigger than the average frequency. After i>5, the frequencies 
of some edges begin to become smaller than the average frequency. 
When i=6, 7, 8, 9 and 10, the frequencies of 2, 3, 5, 10 and 10 edges 
are smaller than the average frequency, respectively. The frequencies of 
the rest 25 edges are smaller than the average frequency after i>5 and 
they are smaller than those of the edges shown in Figure 3. They are 
impossible to compose the Min-HC. 

Although the frequencies of some other edges are bigger than those 
of a few Min-HC edges when i is small, their changes have obvious 
distinctions according to i. The frequencies of the edges in the Min-HC 
will become bigger than the average frequency whereas those of most of 
the other edges will be smaller than the average frequency once i is big.

Come back to formula (1), the number of OPis reaches the 
maximum when i=n/2+1 for even number n. In theory, the frequencies 
of the edges emulated from the OPis will rise before i ≤ n/2+1. After 
i>n/2+1, their frequencies will decrease owing to the reduction of 
the OPis. The average frequency just conforms to the rule. For the 
simple example, the average frequency computed with OP7s is smaller 
than that computed with OP6s. The frequencies of the edges will be 
the maximum when i=6. Before i=6, the frequencies of the edges in 
Figures 2 and 3 increase more rapidly than the average frequency does 
(the frequencies of the OHC increases faster than the other edges). 
However, it is interesting that the frequencies of the edges in the 
Min-HC still arise until i=7. It means the Min-HC edges have more 
chance to compose the long OPis than the other edges do according to 
i. See Figure 2, the frequencies of the Min-HC edges becomes bigger 
and bigger until i=7. After that, the frequencies of them are still much 
bigger than the average frequency. It is different from the change of 
the frequencies of the other edges. In Figure 3, the frequencies of the 
other edges and the average frequency begin to decrease when i>6. In 
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Figure 3: The changes of the frequencies of the other 10 edges according to i.

0 1

1 2

2 6

6 7

7 8

8 4

4 5

5 3

3 0

avg. f

Figure 4: The changes of the frequencies of the 9 edges in the Min-HC 
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Figure 2: The changes of the frequencies of the 10 edges in the Min-HC 
according to i.

Table 2: The minimum frequency of the Min-HC edge according to i (Example 1).

i 4 5 6 7 8 9 10
Min. 82 227 395 455 323 125 20

i-2
n-2C 84 224 350 336 205 76 18

a 1.54 1.97 2.21 2.94 2.12 2.04 2.02
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addition, the frequencies of the other edges decrease more rapidly than 
the average frequency does until they become smaller than the average 
frequency. It is the second difference between the frequencies of the 
edges in the Min-HC and those of the other edges. 

When i is smaller than n/2+1 (n is even), the frequencies of the 
edges rise according to i. When i=n/2+2 for even number n, the 
frequencies of the edges in the Min-HC will still rise whereas those of 
the other edges will begin to decrease. 

Figures 2 and 3 give us an overview of the changes of the frequencies 
of the edges according to i when n is even. Next the other simple example 
is adopted to illustrate the changes of the frequencies of the edges if n 
is odd. The first 9 vertices in Table 1 are selected to compute all of the 
OPis (4 ≤ i ≤ 9) and then 9 FGs are computed with these OPis. The 
Min-HC is (0,1,2,6,7,8,4,5,3,0). The changes of the frequencies of the 9 
edges in the Min-HC are shown in Figure 4. The average frequency is 
drawn with bold lines in Figure 4. When i=8 and 9, the FG includes 31 
and 21 edges, respectively. They are similar to those in Figure 2. Only 
two frequencies of edge (2, 6) are smaller than the average frequency 
when i=4 and 5. All of the frequencies of the other edges are bigger 
than the average frequency according to i. The minimum frequency 
of the Min-HC edge is listed in Table 3 according to i. The parameter 
a is also computed with formula (8). Similarly, parameter a is below 3 
according to i. It says the number of edges in the frequency polygons is 
less than 3i according to i. 

The other 9 edges with the maximum frequencies when i=4 are 
chosen and their frequency changes are shown in Figure 5 according 
to i. Different from the changes of the frequencies in Figure 4, some of 
these frequencies are bigger than the average frequency first and then 
become smaller than the average frequency according to i. 

The number of OPis reaches the maximum value when i=(n ± 
1)/2+1 for odd number n. In this case, the number of OP5s and OP6s 
is the maximum. In theory, the frequencies of the edges will be the 
maximum when i=6. Figure 4 shows the frequencies of the Min-HC 
edges reach their maximum number when i=6 and then decreases. 

The changes are different from those in Figure 2 where they reach the 
maximum number when i=7(i=n/2+2). Before i=6, the frequencies 
of the Min-HC edges increase sharply in Figure 4. However, the 
frequencies of the other edges increase slower from i=5 to i=6 in Figure 
5. This is a big difference of Figures 4 and 5. Although the frequencies 
of some other edges increases before i=(n+1)/2+1 for odd number n, 
the frequencies of the Min-HC edges increase faster than the other 
edges do from i=(n-1)/2+1 to i=(n+1)/2+1. For the frequencies of the 
Min-HC edges, they increase sharply to reach their maximum before 
i=(n+1)/2+1. On the other hand, the frequencies of the other edges rise 
a little slower from i=(n-1)/2+1 to i=(n+1)/2+1 than they before act. It 
verifies that the edges in the Min-HC have more possibility to compose 
the long OPis than the other edges do according to i. 

Some useful conclusions are drawn according to the experiments 
with the two simple examples. When an FG is computed with the OPis, 
the frequencies of the edges in the Min-HC will be bigger than that 
computed with formula (4) in most cases. When i becomes big, the 
formula (8) is more suitable to compute the minimum frequency of the 
Min-HC edge. The frequencies of the Min-HC edges become bigger 
and bigger until they reach the maximum frequencies. In this stage, 
they increase faster than the average frequency does according to i. 
When i is big, they are much bigger than the average frequency and 
those of most of the other edges. Moreover, the frequencies of the edges 
in the Min-HC will still arise when i=n/2+2 for even number n. For 
odd number n from i=(n-1)/2+1 to i=(n+1)/2+1, the frequencies of the 
edges in the Min-HC increase as before whereas those of the other edges 
will increase more slowly than before. After i>n/2+2 for even number n 
and i>(n+1)/2+1 for odd number n, the frequencies of the edges in the 
Min-HC will be much bigger than the average frequency according to i. 
On the other hand, the frequencies of most of the other edges decrease 
faster than the average frequency does until they become smaller than 
the average frequency. 

Conclusion and Future Work
The revelation of the change of the frequencies of the Min-

HC edges is the main contribution of the research. The Min-HC is 
combined with n OPis but not the NOPis whereas it is hard to conclude 
which OPis belong to the Min-HC. When these OPis are converted 
into the FGs, the difference between the Min-HC edges and the other 
edges is illuminated by their frequencies. When the FGs are computed 
with the OPis, the edges in the Min-HC usually have bigger frequencies 
than those of the other edges. The intrinsic reason is that these OPis 
approach to the Min-HC nearer and nearer according to i. The edges 
in the Min-HC have more chance to compose the OPis than that the 
other edges, especially to combine the long OPis. Hence, the edges with 
big frequencies emulated from them have the potential to compose the 
Min-HC. 

In general, the frequencies of the edges in the Min-HC are bigger 
than the average frequency and they will be much bigger than the average 
frequency when i is big. The formula (8) can be used to approximate 
the minimum frequency of the Min-HC edge. The frequencies of 
the edges in the Min-HC increase faster than the average frequency 
does according to i if i<n/2+1 for even number n and i<(n+1)/2+1 
for odd number n. In the two simple examples, it is observed that 
the frequencies of the Min-HC edges will still become bigger when 
i=n/2+2 for even number n. On the other hand, the frequencies of the 
other edges begin to decrease once i>n/2+1. For odd number n from 
i=(n-1)/2+1 to i=(n+1)/2+1, the frequencies of the edges in the Min-
HC increase as before whereas those of the other edges will increase 

Table 3: The minimum frequency of the Min-HC edge according to i (Example 2).

i 4 5 6 7 8 9
Min. 61 139 192 169 83 17

i-2
n-2C 21 35 35 21 7 1

a 1.55 2.01 2.27 2.24 2.07 1.88

6 8

0 2

1 3

3 4

5 8

2 3

1 7

4 7

4 6

avg. f

Figure 5: The changes of the frequencies of the other 9 edges according to i.
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more slowly than before. The results mean the Min-HC edges have 
more possibility to compose the long OPis than the other edges do. 
The future work will focus on the minimum frequency of the edges in 
the Min-HC. We will verify if the minimum frequency is bigger than a 
given number in the worst case. 
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