A Mathematical Miscellany

Peter Sheehan*

Department of Mathematics, Swinburne University of Technology, Victoria, Australia

Introduction

First, let's express the summation over j of jr from $\mathrm{j}=1$ to $\mathrm{j}=\mathrm{n}$ in the form

$$
s(n, r)=S(n, 1) E / 3(r=1)
$$

Then,

$$
E=6 n^{r-1}+3(r-1) n^{r-2}+[(r-2 E)!(\mathrm{r}-4)!\}\left(\mathrm{n}^{r-3}-n^{r-4}\right)-\mathrm{a}(1, \mathrm{r})\left(\mathrm{n}^{r-5}-n^{r-6}\right)+a(2, r)\left(n^{r-7}-n^{r-8}\right)
$$

Until the term ($n 2-n$) for r odd and ($n-1$) for r even and where the summation over j , from $\mathrm{j}=0$ to $\mathrm{j}=2$, of the terms
$(-1)^{j}[3!/ j!(3-j)!] a(1, r-j) \quad$ equals $(r-2) / 5$ for the minimum value of $r>6$, and so on.
The above formula is equals $(r-2) / 5$ for the minimum value of $r 6$ and so on.

In other words, the summation over j from $\mathrm{j}=0$ to $\mathrm{j}=2$ of the terms

$$
\left[(-1)^{\prime} 2!/(2-j)!j!\right] a(1, r-j) \text { equals } 1+[(r-1)(r-2) / 2-10] / 5 .
$$

For r odd, the summation over j , from $\mathrm{j}=0$ to $\mathrm{j}=(\mathrm{r}+1) / 2$, of the terms
$(-1)^{j}\{[(r+1) / 2]!/ j![(r+1) / 2-j]!\} a(p, r-j)$ equalszero

About the Study

For the minimum value of $r \geq 5+4 p, p=1,2$ the summation over j from $j=0$ to $j=(3+2 p)$ of the terms (an iterated form)

$$
(-1)^{j}\{(3+2 p)!/ j![(3+2 p)-j]!\} a(p, r-j) \text { equalszero }
$$

Where t denotes final, for r even,

$$
a(t, r)(r+2) / 2=a(t, r+1)
$$

Further, for r odd,
$(r-2)!/ 2!(r-4)!-a(1, r)+a(2, r)-\ldots .=3(r-3) / 2$
For r even, r from 6 upwards,

$$
a(t, r)(r+3)(r+2) / 6=a(t, r+2)+a(t-1, r+2) .
$$

For the minimum value of $r \geq 4(n+1)$, the summation over j from $j=0$ to $j=2(n+1)$ of the terms
*Address for Correspondence: Peter Sheehan, Department of Mathematics, Swinburne University of Technology, Victoria, Australia; E-mail: sheehanp@ y7mail.com

Copyright: © 2023 Sheehan P. This is an open-access article distributed under the terms of the creative commons attribution license which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received 12 December, 2022, Manuscript No: JACM-23-91183; Editor assigned: 15 December, 2022, PreQC No. P-91183 (PQ); Reviewed: 29 December, 2022, QC No. Q-91183; Revised: 13 February, 2023, Manuscript No. R-91183 (R); Published: 13 March, 2023, DOI: 10.37421/2168-9679.2023.12.510
$(-1)^{j}[2(n+1)]!/ j![(2 n+2)-j]!a(n, r-j)$ equals $1 /(3+2 n)$.
For the minimum value of $r \geq 2 n-1$ and $n \geq 7$, the summation over j from $j=0$ to $j=n$ of the terms
$(-1)^{j} n!/ j!(n-j)![a(n-6, r-j)+a(n-5, r-j)]$ equals zero. For r odd, $r \geq 17$, the summation over j from 0 to $j=(r+1) / 2$ of the terms $(-1)^{\prime}\{[(r+1) / 2]!/ j![(r+1) / 2-j]!\}[a(n, r-j)+a(n+1, r-j)+a(n+2, r-j)]$ equalszero

For r odd, the minimum value of $r \geq 7$,
$a(t, r)(r+2) / 3=a(t, r+1)+a(t-1, r+1)$.
For r odd, the minimum value of $r \geq 9$,

$$
a(t, r-2) r(r+1) / 12=a(t, r)+a(t-1, r)
$$

For r even, the minimum value of $r \geq 8$,
$a(t, r-2) r(r+1) / 6=a(t, r)+a(t-1, r)$.
$\operatorname{AlsoS}(n, 1)+S(n-1,1)+\ldots \ldots+S(1,1)=(n+2)!/(n-1)!3!$
The first few examples follow, whereSmeans $S(n, 1)$,
$S(n, 2)=S(6 n+3) / 9 . S(n, 3)=S\left(6 n^{2}+6 n\right) / 12 . \quad S(n, 4)=S\left[6 n^{3}+9 n^{2}+(n-1)\right] / 15$.
$S(n, 5)=S\left[6 n^{4}+12 n^{3}+3\left(n^{2}-n\right)\right] / 18$.
Or, to speed things along considerably,
Of course, it takes all of five seconds to deduce that $S(n, 1)=n(n+1) / 2$.
It isn't hard to show that, for the minimum $r 10+5 h$, where $h=1,2, \ldots$, the summation over j , from $\mathrm{j}=0$ to $\mathrm{j}=(6+\mathrm{h})$ of the terms.
$(-1)^{j}[(6+h)!/ j!(6+h-j)!][a(2 h, r-j)+a(2 h-1, r-j)]$ equalszero

Now, on a distinct subject, it is not evident from texts readily available on the Laplace transform that the following is the case.

For the Laplace transform off $(\mathrm{t})=$ sinn at, the inversion via Argand space leaves a simple result [1].

In particular, for n odd,
$2^{n-1} \sin ^{n}$ at $=2^{n-1} f(t)$ equals the summation over j from $j=0$ to $j=(n-1) / 2$, of the terms
$(-1)^{(n-1) / 2-j}[n!/(n-j)!j!] \sin [(n-2 j) a t]$.
For n even,
$2^{n-1} \sin ^{n}$ at $=2^{n-1} f(t)$ equals $[(-1) n / 2][n!/(n / 2)!(n / 2)!]$ plus the summation over j from
$j=0$ to $j=n / 2-1$, of the terms
$(-1)^{j+n / 2}[n!/(n-j)!j!] \cos [(n-2 j) a t]$.

Likewise, the interested reader should find that, for an odd, $2 n-1$ cosn (at) equals the summation over j from $\mathrm{j}=0$ to $\mathrm{j}=(\mathrm{n}-1) / 2$ of the terms.

$$
\lfloor n!/ j!(n-j)!\rfloor \cos [(n-2 j) a t],
$$

While, for n even, $2^{n-1} \cos ^{\mathrm{n}}$ at equals the summation over j from $\mathrm{j}=0$ to
$j=(n / 2)-1$ of the terms

$$
[n!/(n-j)!j!] \cos [(n-2 j) a t]+n!/ 2(n / 2)!(n / 2!)!.
$$

That is, all results are trigonometric functions of the first order for which the absolute values of the (half) wavelength coefficients sum to unity [2].

$a(5,14)=105$			
$a(5,15)=840$			
$a(5,16)=20183 / 5$	$a(6,16)=3617 / 5$		
$a(5,17)=74547 / 5$	$a(6,17)=32553 / 5$		
$a(5,18)=1625012 / 35$	$a(6,18)=1223848 / 35$	$a(7,18)=43867 / 7$	
$a(5,19)=894727 / 7$	$a(6,19)=1004513 / 7$	$a(7,19)=438670 / 7$	
$a(5,20)=3520556 / 11$	$a(6,20)=5433004 / 11$	$a(7,20)=20460019 / 55$	$a(8,20)=3666831 / 55$
$a(5,21)=3713531 / 5$	$a(6,21)=7478419 / 5$	$a(7,21)=8396594 / 5$	$a(8,21)=3666831 / 5$

The same considerations are obvious, even when applied to psychology, where the reaction of an individual to any influence depends on the generation of the reaction within the propagation of the individual's consciousness, and the role of memory of any past events is no less subject to propagation in the same circumstance. Basically, today depends solely on its actual propagation, not yesterday. It is trusted that all of the above reflections may prove to be of use.

References

1. Hogan, Edward R. "The Mathematical Miscellany (1836-1839)." Historia Mathematica 12 (1985): 245-257.
2. Kent, Deborah. "The Mathematical Miscellany and the Cambridge Miscellany of Mathematics: Closely Connected Attempts to Introduce Research Level Mathematics in America, 1836-1843." Historia Mathematica 35 (2008): 102-122.

How to cite this article: Sheehan, Peter. "A Mathematical Miscellany."
J Appl Computat Math 12 (2023): 510.

