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Introduction
One effective way to cure disease is to prevent the development of 

it all together. One modality to combat disease is cancer vaccines that 
would “program” an individual’s immune system to recognize foreign 
antigens by stimulating cytotoxic T lymphocytes (CTL) to attack 
cancer cells expressing a certain tumor antigen [1-5]. Current vaccine 
strategies to combat cancer include vaccines consisting of lymphocytes, 
which include: helper T lymphocytes (Th), dendritic cells (DC), 
macrophages, or reprogrammed oncolytic viruses [1,2]. Such vaccines 
may help deter cancer growth through stimulation of an individual’s 
immune system or by directly attacking a cancer growth [1]. Important 
questions arise when dealing with the idea of preventative cancer 
vaccines such as the practicality of utilizing vaccines to prevent the 
development of cancer as well as how many memory CTL’s need to 
be produced to provide a sentinel within an individual [1,6,7]. Cancer 
poses many issues to the vaccine development process as it displays 
the ability of antigen mimicry, a process by which tumor cells produce 
antigens with specific patterns of the host that can help cancer evade 
immune processing and development. Tumor antigen mimicry with 
self-antigen occurs since tumor-specific antigens (TSA) and tumor-
associated (TAA) antigens are either mutated or overexpressed self-
proteins, respectively (P53 and CEA). This results in active Th cells 
having a difficult time selecting for self from non-self. In addition, 
cancer growth displays variation; it may more rapid or slower than 
that of other disease processes. Such properties can result in a weak 
immune response. The multitude of complexities associated with 
cancer as well as its ability to deter host defenses has challenged 
researchers to seek for alternative therapies to chemotherapeutics due 
to their harmful side effects upon a host. One approach to treating 
cancer began in 1909 when the German scientist Paul Ehrlich proposed 
the “cancer immunosurveillance” hypothesis, which is the idea that the 
immune system can suppress an overwhelming number of carcinomas 
[4,8]. This approach was not tested until the 1950’s when the field of 
Immunology advanced. Experiments attempting to show support 
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Abstract
Mathematical models analyzing tumor-immune interactions provide a framework by which to address specific 

scenarios in regard to tumor-immune dynamics. Important aspects of tumor-immune surveillance to consider is the 
elimination of tumor cells from a host’s cell-mediated immunity as well as the implications of vaccines derived from 
synthetic antigen. In present studies, our mathematical model examined the role of synthetic antigen to the strength 
of the immune system. The constructed model takes into account accepted knowledge of immune function as well 
as prior work done by de Pillis et al. All equations describing tumor-immune growth, antigen presentation, immune 
response, and interaction rates were numerically simulated with MATLAB. Here, our work shows that a robust 
immune response can be generated if the immune system recognizes epitopes that are between 8 to 11 amino 
acids long. We show through mathematical modeling of how synthetic tumor vaccines can be utilized to mitigate a 
developing cancer.

utilized mice that were inoculated with chemically-induced cancer 
cells; such cells lacked the capability to metastasize within a host. 
Over time, this led to the development of cancer-specific immunity in 
the recipient mice. This discovery provided the evidence needed for 
Ehrlich’s hypothesis. Such experiments demonstrated that it is essential 
to have the presence of an antigen to elicit an immune response in the 
host, because if no distinctive structures exist, then no recognition 
would be established [9]. F. Macfarlane Burnet and Lewis Thomas, 
well-known immunologists during the 20th century, hypothesized 
that for immunosurveillance to exist, lymphocytes would need to 
act aggressively akin to sentinels to recognize and eliminate a cancer 
threat. The cancer immunosurveillance theory revolves around three 
transitions states, denoted as “E’s” [9]:

• Elimination- The establishment of a strong cancer surveillance 
network by both the innate and adaptive immune system that seeks to 
eliminate cancer populations.

• Equilibrium- The long-term process of combat between a cancer 
population and a host’s immunosurveillance network.

• Escape- The overpowering of cancer surveillance network by 
strong tumor variants, which results in host death.
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This hypothesis served as a foundation for a previous project 
inspired by de Pillis et. al. which studied the interactions of cancer and 
the immune system utilizing mathematical biology [9]. Mathematical 
Biology is a field of research that draws aspects from both mathematics 
and the biological sciences to represent, model, and analyze complex 
biological processes through techniques such as numerical simulations 
or phase plane analysis [7,10-13]. Mathematical modeling provides 
insight and validity to a complex biological system for clinical research 
without the utilization of human or animal models, entirely bypassing 
ethics boards completely [7,10,12]. Generated data can have similar 
validity to that of data obtained from human or animal experiments. 
Describing systems in qualitative and quantitative manners means 
that behaviors can be simulated and new behaviors that aren’t evident 
to human/animal experimentation can be discovered. Differential 
equations, for example, can predict how populations can behave by 
analyzing variables such as time (ordinary differential equations-ODE) 
or space (partial differential equations) [11,13]. The probability of 
events can also be utilized within mathematical models through Monte-
Carlo Simulations [14-18]. The development of such mathematical 
models has a wide range of implications including the possibility of 
discovering hidden behaviors within systems and determining long-
term goals of a system. For the scope of this paper, we attempt to 
illustrate how mathematical modeling can be utilized to predict the 
strength of a host’s immune response to lung cancer using a coupled 
Monte-Carlo/ordinary differential equation model. Our work is an 
expanded mathematical model that is based on a previous validated 
by a prior mathematical model by de Pillis et al. [9]. Her prior work 
explored the dynamics of tumor rejection, the roles NK and CD8+ T 
cells, as well as the development of protective immunity to subsequent 
tumor re-challenges. Her model was validated through comparison of 
mouse and human data to determine tumor growth and lysis rates. Her 
model further underwent a sensitivity analysis to determine sensitive 
aspects that could be patient specific that could be applied to a clinical 
setting. Her variable analysis suggests which patients could respond 
to treatment. Our model expands through the incorporation of 
additional cellular lines; macrophages are introduced to complete the 
innate immune system perspective and humoral immunity has been 
expanded upon through the introduction of CD4+, CD8+, and CD4+ T 
regulatory cell lines in both their dormant and active transitional states. 
In addition, Interleukin-2 is introduced to see how cytokines impact 
the immune response. Antigen presenting cells, such as dendritic cells, 
have also been introduced to see how antigen presentation plays a 
role in cancer immunosurveillance. While B cells play an important 
part in the adaptive immune response, this cell line has been excluded 
for the purposes of this model due to the focus on T cell response 
and the complexity of the model. We also show how this model can 
be utilized in a clinical setting to predict the long-term consequences 
of a patient’s cancer status if injected with a vaccine composed of 
different lung cancer tumor epitopes [13,17,18]. The development of 
this model focused on first on establishing conditions in which the 
cancer immunosurveillance hypothesis “exists” through parameter 
estimations and bifurcation diagrams relating certain parameter 
families. For details on this work, please refer to the references 
section. This model then focused on validating which cell lines were 
the principal cell line in the innate immune, antigen presentation, and 
cell-mediated responses; of which, NK cells, dendritic cells, and CD8+ 
cells were key in the immune response against cancer. While not much 
insight present, validation of theoretical knowledge confirms that the 
development of the model is the right step. The next step of the model 
was to introduce “randomization” of the immune response via the 
introduction of Monte-Carlo simulation processes. Two variables of 

the model were introduced as extra equations in the model to simulate 
the strength of a tumor epitope vaccine that influences the strength of 
the immune response based on the size of the epitope. The randomness 
of the model can eventually be utilized in a clinical setting to allow 
clinicians to prognosticate the long-term health status of a patient after 
a tumor vaccine is utilized. We developed a mathematical model of 
tumor dynamics in response to a vaccine injection composed of lung 
cancer epitopes (Survivin, Kita-Kyushu lung cancer antigen 1 (KKLC1), 
and epidermal growth factor receptor (EGFR)) of different fragment 
sizes (8-12 amino acids (aa) long) with the goal of determining which 
epitopes produce a strong immune response.

Methods
The dynamics of the mathematical model, as well as parameter 

values, are borrowed from assertions, prior mathematical models, as 
well as through parameter estimation through numerical simulations. 
Our model is based on a previous model published by de Pillis et al. [9], 
but expanded to include simplified T cell development and more cell 
populations to better depict the immune response to cancer. No patient 
data was integrated into this model yet as this model is in its infancy; 
a literature review shows no prior model with an integrated Monte-
Carlo simulator. Generated data now is theoretical but has applicability 
to the clinical setting. The basis for the model is listed below.

Model development

In this study, we developed a mathematical model of tumor 
dynamics in response to a vaccine injection composed of lung cancer 
epitopes of different fragment sizes (8-12 amino acids (aa) long) with 
the goal of determining which epitopes produce a strong immune 
response [9,13,19,20]. The biological assumptions are taken into 
consideration during the development of the model, with prior work 
done by de Pillis et al. [9], and accepted the knowledge of immune 
function, including the following [21,22]:

1) Tumor cells grow in a myriad of ways if there is an absence of 
an immune response. This assumption is based on previous studies 
that considered population growth models such as logarithmic, 
Gompertzian, exponential, etc. Gompertzian growth will be utilized 
for this model as this correlates with the cancer immunosurveillance 
hypothesis [1,11,12,23].

2) Natural Killer (NK) and CTLs can kill tumor cells [4,11,21,22]. 

3) Tumor cells can elicit endogenous defenses in primed cells 
[4,11,21,22].

4) NK cells are abundant and constantly circulate in the immune 
system in their non-primed state.

5) For cell-mediated immunity, T cells are abundant in their 
naïve stage and differentiate into CD4, CD8, and CD4 regulatory cells 
through simplification of the maturation process in the thymus. This 
model assumes a linear transitional state from the naïve to mature 
states [1,19,22].

6) The activation of cell-mediated immunity (CMI) is regulated by 
professional antigen presenting cells (APC) such as Langerhans’s, B 
cells, and macrophages [22]. 

7) Activation of naïve T cells is dependent on Michaelis-Menten 
kinetics. 

8) IL-2 is secreted by mature T cells to activate and recruit 
circulating effector cells. The process of recruitment is based upon IL-2 
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secreted by Th cells that stimulate inactive Th cells, leaving a chemical 
trail for newly activated ones to return to a site where an infectious 
process began. There are a finite number of receptors on the cellular 
surface of a naïve T cell and an IL-2 molecule can be only be bound 
to one receptor at a time. The model assumes an overabundance of 
circulating IL-2 molecules [2,11]. For this model, we assume only IL-2 
is the principal cytokine abundant in circulation and we opt to ignore 
the presence of other cytokines.

9) Regulatory T cells (Tregs) are present to decrease the activity 
of effector and helper T cells. This cell population is minute compare 
other T cell populations as only a certain subset express CD25 and 
FoxP3. This population is only present up to 5%. Our model accounts 
for this fact and incorporates it as a valid assumption [2].

10) Two variables (Rc and Ma) will undergo a Monte-Carlo 
simulation to simulate possible responses from lung cancer epitopes. A 
Monte-Carlo simulation was necessary to incorporate into the model 
since it considers a probabilistic input (tumor antigen size) and turns it 
into a deterministic output (immune response). Multiple simulations 
can be run and can determine possible outcomes of an individual’s 
immune profile [2,10,11,12].

11) All immunological recruitment terms are assumed to be of 
Michaelis-Menten kinetics as they are commonly used in mathematical 
tumor models that include immune components; a saturation effect is 
achieved because of this assumption. Here, we assume there are finite 
cellular receptors for IL-2 and for cellular signaling to transition naïve 
immune cells to their primed state.

Utilizing the 10 assumptions from above, the system can be 
described as 13 coupled differential equations (11 coupled equations 
and 2 “stand-alone” equations) where each equation gives the rate of 
change of a cell population in terms of growth, death, cell-cell kill, 
cell recruitment, or cell inactivation. Previous versions of this model 
studied different aspects of the immune response; for example, CTL’s 
are the primary cell in cell mediated immunity and dendritic cells are the 
principal cell that bridges the innate and adaptive immune responses 
[1,7]. This model, now, has been modified further to introduce the 
addition of lung cancer “vaccines” using Monte-Carlo processes to 
simulate an antigen stimulation response to different HLA epitopes 
[9,13,19]. The strength of binding will depend on the generated values 
of two variables from the Monte-Carlo process. The model is as follows:
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Equation #1 describes the change in the population of a cancerous 
pathology in which the state variable is C. Cancer populations 
propagate (rc) at a fixed rate and die off due to cell-to-cell interactions 
between NK cells (k1), CTL’s (k2), and macrophages (k3).

Equation #2 describes the change of NK cell populations in which 
the state variable of this equation is (N). NK cells are born at a fixed rate 
(Bn) and die off (Dn) in proportion to population levels. In addition, 
NK cells are recruited in response to cancer antigen presentation at 
a fixed rate (Rn and Mn) as well as die off due to cell-cell interactions 
with cancer (Ln).

Equation #3 describes the change of naive CD8 populations in 
which the state variable of this equation is (Tn). Naive CD8 populations 
are born at a fixed rate (Bt) and die off (Dt) in proportion to population 
levels. Such cells then transition from the naive to primed states due to 
cancer antigen acquisition (Ma) by antigen presenting cells at a fixed 
rate (Mt), which then present the processed cancer antigen to naive 
populations.

Equation #4 describes the change of primed CD8 populations in 
which the state variable of this equation is (Te). Naive CD8 populations 
are primed with cancer antigen transition from their naive to primed 
states to combat cancer (first term) and die off (De) in proportion to 
population levels. Primed CTL populations are then influenced due to 
memory cell recruitment by interleukin-2 (Rr) and are inhibited (Ih) by 
T regulatory cells.

Equation #5 describes the change of naive CD4 populations in 
which the state variable of this equation is (Rn). Naive CD4 regulatory 
populations are born at a fixed rate (Br) and die off (Dr) in proportion 
to population levels. Such cells then transition from the naive to primed 
states due to cancer antigen acquisition (Ma) by antigen presenting cells 
at a fixed rate (Mt), which then present the processed cancer antigen to 
naive populations.

Equation #6 describes the change of primed CD4 populations in 
which the state variable of this equation is (Re). Naive CD8 populations 
are primed with cancer antigen transition from their naive to primed 
states to combat cancer (first term) and die off (Dr) in proportion to 
population levels. Primed CTL populations are then influenced due to 
memory cell recruitment by interleukin-2 (Rr) and are inhibited (Ih) by 
T regulatory cells.
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a computerized simulation of a host’s immune response after he or 
she is inoculated with a vaccine, and then subsequently encounters a 
tumor antigen once discovered. All images depicted in this section run 
on an arbitrary time scale rather than a 24-hour day. This timescale 
is utilized to provide the basis for how the model can be applied to 
a clinical setting. Previous versions of this model focused on the 
“cancer immunosurveillance” hypothesis as well as confirming prior 
knowledge of established immunological knowledge. A previous 
version of the model, for example, did not have equations #11-13. The 
output of previous models, first using GNU Octave, then MATLAB, 
depicted cancer being eliminated over time coming from a powerful 
immunological response. With such results and confirmations in 
mind, the model then focused on the application of vaccines to the 
immunological host. This model can be used to simulate the relative 
strength of the immunological response to a cancer population within 
a host after a tumor vaccine is injected into a host. Relevant parameters 
to consider that help determine the strength of the immune response 
include Rc (cancer propagation) and Ma (Antigen presentation) as 
both variables are important to utilize in the Monte-Carlo Simulator. 
During the experiment’s course, biologically relevant parameter ranges 
were estimated through multiple simulations with MATLAB. This was 
necessary to determine what range of values for both variables have 

Equation #7 describes the change of interleukin-2 concentration 
in which the state variable of this equation is (I2). IL-2 is produced at 
a constant rate (Ci) by primed immune cells, mainly of HTL lineage, 
and is consumed in varying proportions (Rh, Rt, and Rr) to recruit 
circulating memory cells to combat cancer populations. In addition, 
IL-2 denatures (Di) in proportion to population levels. 

Equation #8 describes the change of antigen presenting cells in 
which the state variable of this equation is (Ap). APC populations are 
primed (Ra) in direct proportion to cancer antigen and die off (dA) in 
proportion to population levels.

Equation #9 describes the change of naive CD4 regulatory 
populations in which the state variable of this equation is (Rn). Naive 
CD4 regulatory populations are born at a fixed rate (Br) and die off 
(Dr) in proportion to population levels. Such cells then transition from 
the naive to primed states due to cancer antigen acquisition (Ma) by 
antigen presenting cells at a fixed rate (Mt), which then present the 
processed cancer antigen to naive populations.

Equation #10 describes the change of primed CD4 regulatory 
populations in which the state variable of this equation is (Re). Naive 
CD4 regulatory populations are primed with cancer antigen transition 
from their naive to primed states to combat cancer (first term) and die 
off (Dr) in proportion to population levels. Primed CTL populations 
are then influenced due to memory cell recruitment by interleukin-2 
(Rr).

Equation #11 describes the change of macrophage populations in 
which the state variable of this equation is (M). NK cells are primed at a 
rate (Ra) in proportion to cancer antigen and die off (Dn) in proportion 
to population levels as well as interactions with cancer cells (Ln). 

Equations #12 and #13 act as placeholder equations for two 
variables (Rc and Ma) that act as the Monte-Carlo Simulator via a 
pseudo-number generator that affects the output of the other eleven 
equations.

A Monte-Carlo simulator was added to the previous version of this 
model to account for the random strengths of an individual’s immune 
system when an APC encounters a tumor antigen. Selected antigens 
from the database include EGFR1 and Survivin [18]. Tumor antigens, 
obtained from Harvard University’s TANTAGEN epitope database, 
are processed via an MHC class I pathway and are random sizes (8-11) 
amino acids long. In addition, cancer growth rates, although slow, vary 
from individual to individual [18]. Thus, a simulator (random number 
generator for both Rc and Ma) was utilized to vary the response of an 
individual’s immune system when exposed to a tumor vaccine or model 
the immune system once lung cancer is detected. Each tumor antigen 
selected from TANTIGEN would be simulated through the “Monte-
Carlo” simulator on MATLAB and such results would be incorporated 
into final graphs. Parameters for the model were either estimated or 
incorporated from another source [20] (Table 1). The above model was 
then subjected to MATLAB, an open source math modeling program, 
was utilized to simulate the model, estimate parameter values, as well as 
determine scenarios in which tumor vaccines produce varying immune 
responses. Below is a table of all parameters and estimated values.

Results
The above model can be utilized to simulate the strength of a host’s 

immune response after he or she is inoculated with a lung cancer 
vaccine. Results from the model are in silico, meaning that results 
from this model can be applied to a clinical setting, but not to 100% 
accuracy. Here, the term “injected vaccine” will re reference refers to 

Parameter and units Parameter 
description

Parameter 
value

Reference or 
Estimation

Rc (1/day) Cancer 
Propagation

1 × 10-10<x<1 
× 10-4 Estimation

K1, K2, K3, Ln (Cell/day × nL)

Interaction 
between cancer, 

NK, CD8, and 
Macrophages

3.50 × 10-12

de Pillis et al. in 
2005

4.60 × 10-7

7.50 × 10-12

1.00 × 10-13

Bn (cell/day × nL) Birth (fixed) and 
death rates of NK 

cells/Macrophages

1.30 × 10-2
de Pillis et al. in 

2005Dn (1/day) 4.12 × 10-8

Rn (1/day) Recruitment of 
circulating NK cells

2.50 × 10-8 de Pillis et al. in 
2005Mn (cell2/nL) 20.2

Ma (1/day) Antigen 
Presentation

1 × 10-7<x<1 
× 10-3 Estimation

Bt (cell/nL × day) Birth and death 
rates of naïve CD4 

cells

8.55 Kim et al. in 
2007Dt (1/day) 3.00 × 10-8

Dt (1/day) Death rates of 
CD4, CD8, and 
CD4 regulatory 

cells

2.00 × 10-8

Kim et al. in 
2007

Dh (1/day) 4.00 × 10-8

Dr (1/day) 1.00 × 10-9

Rt (cell/nL × day) Recruitment rates 
of CD4, CD8, and 

CD4 regulatory 
cells

3.75 × × 10-8

de Pillis et al. 
200

RH (cell/nL × day) 1.88 × 10-9

Rr (cell/nL × day) 3.75 × 10-8

It (1/day) Inhibition of CD4/
CD8 Activity by 
CD4 Regulatory 

cells.

5.00 × 10-7 de Pillis et al. 
2005Ih (1/day)

Bh (cell/nL × day) Birth and death 
rates of naïve CD8 

cells

6 Kim et al. in 
2007Dth (1/day) 3.00 × 10-8

Br (cell/nL × day) Birth and death 
rates of naïve CD4 

regulatory cells

4.50 × 10-5
Kim et al. in 

2007Dr (1/day) 3.00 × 10-8

Ci (1/nL × day) Production and 
degradation of IL-2

1.00 × 103 Kim et al. in 
2007Di (1/day) 1.00 × 10-7

Ra (1/day) Antigen production 
and death of APCs

1.00 × 10-4 Kim et al. in 
2007Da (1/day) 3.00 × 10-8

A list of parameters used for the model. Parameter values are indicated to be 
utilized from another paper or estimated from computer simulations.

Table 1: Parameter descriptions and values.
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applicability to the clinical setting. Figures 1A-1C establish the basis 
of the model without the application of a Monte-Carlo simulator. 
Our model, before the Monte-Carlo simulation was added, was valid 
through confirmation of prior immunological knowledge; our model 
demonstrated, for example, that macrophages played more of an active 
role during the innate immune phase as this cellular population not only 
could deter cancer to a limited degree but also has the role of acting as a 
professional Antigen Presenting Cell (APC) along with dendritic (DC) 
and B cells. Our model also confirmed that the main cell population 
that bridges between the innate and adaptive immune system is APCs, 
but the major cellular population involved is DCs. Our model also 
confirmed that the principal cell that can eliminate cancer is Cytotoxic 
T-Lymphocytes (CTLs) Such confirmations establish that the model 
has a basis for the clinical setting. A previous version of this model 
was also utilized to establish the basis the cancer immunosurveillance 
hypothesis .

The above images (Figures 1A-1C) are a product of the old model 

through expansion of de Pillis et al. model. Here, the model tells a 
complete story of the cancer immunosurveillance response through 
multiple perspectives, except for B cells. The ultimate result from 
all figures is the elimination of a cancerous population. Figure 1B 
depicts the principal cell that bridges the innate and adaptive immune 
responses, while Figure 1C depicts the major cell during the immune 
response; the CD8 response is augmented through CD4 assistance. The 
next step for this project is to show how it results can be applied to a 
clinical setting to determine the effectiveness of a cancer vaccine prior 
to a host developing cancer. For this part of the study, three processed 
antigens from the TANTIGEN database were utilized for the Monte-
Carlo Simulator, which is: 1) Survivin, 2) Kita-Kyushu lung cancer 
antigen 1 (KKLC1), and 3) Epidermal growth factor receptor (EGFR) 
[24]. Most of these tumor antigens are processed via an MHC class 
I pathway which requires HLA (Human Leukocyte Antigen) –A and 
–B molecules to facilitate the immune recognition process. The size 
of the tumor antigen, too, plays a role in the strength of the immune 
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Figure 1A-1C: Time plots of cell populations with the utilization of the initial model. Figure 1A depicts a normal immune response to cancer (C=200,000). Figure 1B 
depicts antigen presenting cells during the innate immune response with dendritic cells (C=200,000, M=DC=1,000). Figure 1C depicts a normal immune response with 
modified naïve CD4 and CD8 cells (Naïve CD8=Naïve CD4=1,000). CD8 cells are predominant during the adaptive immune response. 
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response as certain sizes of each epitope interact with a specific HLA 
molecule. The model accounts for such interactions through the two 
Monte-Carlo simulators. Both Monte-Carlo simulators also account 
for the “randomness” of antigen size due to the variation of both Rc and 
Ma. Generated graphs for this project assumes that for each simulation, 
a patient was injected with a “cocktail” of vaccine epitopes of random 
sizes. The immune system recognizes an epitope that is between 8-11 
aa long and produces a robust immune response. Any other size of an 
epitope will alter the immune response. Figure 2 shows an immune 
response after inoculation with a lung tumor vaccine; for example, a 
vaccine composed of synthetic survivin epitopes of random sizes.

For the above situation, the injected vaccine has a mix of synthetic 
survivin molecules with different fragment lengths of 5-11 amino acids. 
This situation illustrates the individual encountering a fragment of 10 aa 
long via an MHC class 1 pathway with a HLA-A molecule; HLA-A11:02 
are the associated MHC class I molecule for survivin epitopes. Any 
other interaction with other HLA molecules (HLA-A24:02, etc.) may 
produce a weak response for the immune system due to the weak 
binding affinity between survivin and other HLA molecules (data not 

shown). Here to note are several differences between Figures 1 and 2. 
With the addition of a tumor vaccine, cancer’s existence is cut down to 
3/8 of its original lifespan. A cancer population lives up to about 1500 
arbitrary days compared to 4,000 without a vaccine. In addition, the 
immune response is more robust. A reason for these observations is that 
with the addition of a tumor vaccine, more memory CTLs and HTLs are 
produced. A strong response has, in sense, been programmed and can 
be activated on a whim when a developing cancer is noticed. Another 
situation that can occur, there may times in which a tumor vaccine may 
be ineffective to an individual in that the tumor antigen may not have 
the proper associated HLA molecule or the processed peptide is too 
large or small for the immune system to recognize. After inoculation 
with a tumor vaccine, the immune system may fail to recognize a 
processed tumor antigen as the size of it may have weak recognition 
from the MHC class I pathway or a developing cancer population may 
have evolved its epitopes to avoid recognition all together. In this case, 
once active lung cancer is detected by an individual’s immune system, 
it must keep up with the growth rate of a specific lung cancer type to 
eliminate the growth, keeping in equilibrium, or allowing it to escape 
and predisposing the host to die. In this case, the figure below would 
suggest an escape situation whereby lung cancer would allow the host 
to succumb. Figure 3 shows an immune response after inoculation with 
a lung tumor vaccine:  

Epitope size, ultimately determine the strength of the immune 
response. The tumor vaccine used for the above image may have 
epitope fragments less than 8-11 aa long. The small fragment size 
is mainly due to CTLs and DCs responding at a slow rate or a high 
cancer growth rate. In this case, cancer growth plays a major role in this 
situation as overgrowth results in less processing of cancer peptides
. A tumor vaccine may be composed of peptide patterns that produce 
either strong, weak or no affinity to HLA-A11:02, depending on the 
fragment length. The pattern influences the binding affinity due to the 
amino acid sequence and shape. If a specific pattern cannot bind in a 
configuration that can be recognized by any HLA-A molecule, then the 
immune system will fail to respond to lung cancer and a patient will 
succumb. 

Discussion
The above model incorporates tumor-immune interaction 

terms of a form that is qualitatively different from those commonly 
used in that Monte-Carlo randomization methods are utilized to 
depict multiple clinical scenarios of how a tumor vaccine influences 
an immune response. For this paper, three antigens (Survivin, Kita-
Kyushu lung cancer antigen 1 (KKLC1), and Epidermal growth 
factor receptor (EGFR)) were selected for this model to predict how 
the immune system would respond to synthetic lung tumor vaccines. 
Our results illustrate that amino acid epitopes between 8-11 aa long 
will produce a robust immune response, while anything not in this 
estimated range will produce a non-robust immune response. Here, 
Figures 2 and 3 illustrate an immune response of an injected cocktail 
of survivin epitopes; the results inferred from this can be applied to 
epitope cocktails of KKLC1 and EGFR since both epitopes utilize 
the same MHC class 1 pathway. Synthetic survivin can also exist as 
fragment lengths of 9 or 11 as long and can interact with molecules 
of the HLA-A family. We utilized to TANTIGEN database to look 
for possible pairings of epitopes to specific HLA molecules; from a 
TANTIGEN database search, an HLA molecule that can bind with the 
best affinity to Survivin molecules is HLA-A11:02 mainly due to the 
number of patterns that can bind to the molecule [24]. This model, 
although useful in predicting the long-term status of a patient, cannot 
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Figure 2: A time plot of cell populations with the utilization of the new model. 
This figure illustrates an immune response after an individual is injected with 
a tumor vaccine. Here, the patient is exposed to a tumor antigen (Survivin) of 
11 amino acids long. Here, cancer is eliminated in 1750 days. C=20,000 cells.
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Figure 3: A time plot of cell populations with the utilization of the new model. 
This figure illustrates an immune response after an individual is injected with 
a tumor vaccine. Here, the patient is exposed to a tumor antigen (Survivin) of 
weak or no affinity to an MHC class I molecule. Here, cancer is not eliminated. 
C=20,000 cells.
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effectively predict which antigen epitopes and HLA combinations will 
produce a strong immune response due to the current nature of the 
model. As of now, the model can only foretell the immune system’s 
response to a specific antigen. The current version of this model can 
only test three epitopes at this moment through variation of two 
parameters (cancer propagation and antigen presentation). With 
the addition of more epitopes over time, the model will need to be 
subjected to a hidden Markov model to determine the probability of 
the immune system strength as well as binding strength for sequences. 
Consequently, the current use of this model will involve prediction of 
the immunological efficiencies of each epitope in terms of generating a 
cancer-specific tumoricidal immune response. The strength of binding 
between processed antigen and an MHC molecule depends on how 
well the primary structure (amino acid) of processed antigen can bind 
to the groove of an MHC molecule (MHC class I and class II). Three 
isoforms of MHC class I molecules exist within the human immune 
system (HLA-A, HLA-B, and HLA-C), with HLA-A02 being the most 
common molecule. MHC class I molecules are designed to recognize 
peptide fragments of about eight to ten aa along with the maximum 
being 11. With the involvement of intracellular antigens for cancer, 
the selection of the right HLA gene complex depends on the sequence 
involved to activate the system. As mentioned previously, the primary 
structure of processed antigen must conform to the right configuration 
to elicit a response from a CD8 cell. We can infer from our results is 
that anything, not 8-11 aa long will produce an immune response, 
but affects the duration and strength. For this, antigen processing and 
recognition can be thought of as a randomized process.

Conclusion
One effective way to reduce morbidity and mortality of a disease in 

the first place is through vaccination. This process can be approached 
from multiple perspectives, such as clinical trials on humans and 
animals, but one unique way is through the lens of mathematical 
biology; mathematical simulations provides numerous benefits such 
as the non-reliance upon human/animal models as well as predicting 
future behaviors for a system [10,25]. Although mathematical modeling 
cannot portray life to complete accuracy, this process can find 
qualitative and quantitative hidden behaviors not seen in clinical trials. 
For the scope of this project, the aim was to generate an 11-differential 
equation model with a Monte-Carlo simulator that could predict the 
course of the immune system after injection with a synthetic cancer 
vaccine. The initial stages of development of this model confirmed prior 
knowledge of the innate and adaptive immune system; for example, 
CD8 cells are the principal cell-mediated immunity for cancer as well 
as dendritic cells being the principal cell during the innate immune 
response. Three antigens Survivin, KKLC1, and EGFR [24] were 
utilized from the TANTIGEN database to predict an immune response 
once cancer was detected within an individual following utilization of 
a synthetic vaccine. In conclusion, we have for the first time applied 
mathematical modeling as a tool to depict the relative strength of a 
host’s immune response after it has been subjected to a lung tumor 
vaccine. Here, we showed and can infer that if a synthetic epitope is not 
between 8-11 aa long, which can be substantiated by the TANTIGEN 
database, a host will produce an immune response, but that is not ideal 
to the elimination of cancer [26,27]. Studies are ongoing to elucidate 
the above perspectives by mathematical modeling through different 
means. In this regard, mathematical modeling of tumor immune 
dynamics through the perspective of vaccines may be highly important 
and useful to support the decision-making of how vaccines are 
synthesized and incorporated into a host. In addition, this model can 

be utilized to serve clinicians and patients as a prognosticating tool to 
depict situations to facilitate a patient’s decision process [28,29]. Future 
explorations of this model will aim at comparing generated data with 
data derived from clinical studies to substantiate the authenticity of 
this mathematical model in the prediction of clinical efficacy of various 
immune-therapeutic modules. Mathematical modeling is important 
tool researchers can utilize as it can also be applied to study other 
human disease processes such as cardiovascular, gastrointestinal, as 
well as auto-immune diseases.
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