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Introduction
Trace elements including heavy metals are natural components 

of aquatic ecosystems but usually occur in low concentrations [1]. 
They mainly get into the water bodies through the natural geological 
weathering of rocks and soil, directly exposed to surface waters. 
Additionally, heavy metals get into the aquatic environment through 
anthropogenic activities such as domestic, industrial, mining, and 
agricultural activities leading to contamination. When they get into the 
aquatic environment, they get adsorbed onto inorganic and organic 
particulate deposits and are incorporated into sediment resulting 
in elevated levels in the bottom sediment area [2]. Elevated levels of 
heavy metals in the aquatic environment can affect aquatic organisms 
especially when they occur above threshold concentrations [1]. Some 
heavy metals bioaccumulate in various organs of aquatic organisms 
[3,4]. Some of the reported toxic effects of heavy metals in aquatic 
organisms include; tissue damage, disruption in growth, reproduction, 
induction and synthesis of metallothionein [5].

When aquatic organisms such as fish are exposed to elevated metal 
levels, they can absorb the bioavailable metals from their environment 
directly via the gills and skin or through the ingestion of contaminated 
water and food. These metals are then transported by the bloodstream 
bringing them into contact with the various organs and tissues [6]. 
However, there is a certain extent to which fish can regulate metal 
concentrations beyond which bioaccumulation will take place. When 
such fish are consumed by human beings, they pose a risk to their 
health and can eventually cause death. In a report of the world’s worst 
pollution problems, heavy metals are said to have the most potential 
risk to the health of large human population hence, they are a top threat 
to humankind [7]. It is because of such potential risks that several 
studies on heavy metals have been carried out in various aquatic water 
bodies in Kenya. For example, in Lake Naivasha, despite being a Ramsar 
site and a world heritage site, its perceived to be heavily impacted by 

anthropogenic activities, resulting to a number of investigations on 
heavy metals [1,3,8,9].

These studies have found elevated levels of some heavy metals such 
as Aluminium (Al), Iron(Fe), Manganese (Mn), Zinc (Zn), Rubidium 
(Rb), Copper (Cu), Cadmium (Cd) and Lead (Pb) in the sediments 
compared to the threshold levels provided by Turekian et al. [10] and in 
fish as compared to the recommended levels by FAO [11]. For example, 
Mutia et al. [8] reported that the concentration levels of Pb and Cd 
in edible muscle of the Common carp (Cyprinus carpio) from Lake 
Naivasha were above the maximum allowable FAO limits which is 0.3 
mg/kg for edible portions of fish. On the other hand, Otachi et al. [3] 
reported high Target Hazard Quotients (THQ) of Li, Zn, Sr and Cd in 
the muscle of Oreochromis leucostictus from the lake indicating a health 
risk to the local community that depends on fish for regular food

Although some research has been done to correlate several heavy 
metal concentrations in sediments, water and fish in different sites 
around Lake Naivasha [3,8], none of the studies has included Hg, As 
and Cr in their studies. Furthermore, there are no studies that have 
correlated the heavy metals concentrations in the sediment and water 
from Lake Naivasha with the Straightfin barb (E. paludinosus), a fish
species that hosts a parasite (Ligula intestinalis), the latter having high 
ability to absorb heavy metals from its host. Enteromius paludinosus 
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is a little fish (maximum size 15 cm Standard Length), which is a 
benthopelagic species and occupies a range of habitats including large 
rivers, lagoons both connected or isolated from main river channels, 
and small and large streams [12]. It is a subsistence source of proteins 
mainly for artisanal fishers and their dependents in the area, but rarely 
featuring in the fish markets around the lake. The aim of this study 
was to determine the concentrations of THg, Pb, Cr and As in the fish
tissues and associated parasites of E. paludinosus from Lake Naivasha, 
Kenya, and assess potential health risks for fish consumers around Lake 
Naivasha.

Materials and Methods
Study area

Sampling was undertaken at Lake Naivasha in the month of 
November 2017. Lake Naivasha is a shallow freshwater lake in the Great 
Rift Valley of Kenya. Its freshness is attributed to surface water inflow,
biogeochemical sedimentation and underground seepage [13]. The lake 
has a surface area that ranges between 120 and 150 km2 subject to the 
dry and wet seasons respectively, with a mean depth of 4-6 m [14,15]. 
The lake is located at an altitude of 1885 m a.s.l between latitude 00°45’ 
S-00°53’ S and longitude 36°15’ E-36°30’ E [16]. Lake Naivasha is a 
eutrophic lake [17] and most of its freshwater inflow comes from River 
Malewa [18]. In the year 1995, Lake Naivasha was declared a Ramsar 
Site giving it an international importance due to its freshness and 
diverse ecology [19]. Themean temperature of the lake is approximately 
25°C, with a maximum temperature of 30°C [20]. Its mean annual 
rainfall ranges from about 60 mm at the Naivasha township to some 
170 mm along the slopes of the Nyandarua mountains, with open 
water evaporation estimated at approximately 172 cm/year [21]. The
main activities that depend on the use of water from this lake include 
agriculture (horticultural farms), geothermal power generation, 
domestic water supply, commercial fishing, tourism, and recreation 
including ranching and game farming. This consequently results to 
environmental problems such as water abstraction, which results to 
changes in water level, eutrophication, pollution, and invasive species, 
and also decline in fish stocks and biodiversity [22]. Figure 1 shows the 
location of the sampling site; the mouth of River Malewa (0.714622°S 
36.362709°E).

Water and sediment sampling

Measurements of the pH, dissolved oxygen, conductivity and 
temperature were taken in situ 10 cm below the water surface from the 
selected sampling site using a Multi probe water quality meter (Model 
Multi HQ40d, USA). 500 ml of water sample was collected from the 
same depth by immersing the bottle and lifting it up and immediately 
filtered using a filter pump fitted with Whatman GFC filters into a plastic 
bottle and acidified with 2.5 ml of concentrated nitric acid (Analytical 
grade) to avoid precipitation of the metals and adsorption at the surface 
of the bottles. A sediment sample was then obtained using stainless 
Ekman grab sampler. The sediment sample taken for heavy metal 
analysis was obtained from the sample that was not in contact with the 
metallic surfaces of the Ekman grab sampler to avoid contamination. 
The sample was then put in a plastic sample vial which was then placed 
inside a cool box and transported to a laboratory at the Biological 
Sciences Department, Egerton University. The water and sediment 
samples were then stored in the refrigerator at a temperature of -20°C in 
the laboratory and later transported to the Lake Nakuru Water Quality 
Testing Laboratory (WQTL) for heavy metal determination after three 
days.

Fish sampling and parasitological examination

A total of 1307 fish samples were collected using seine nets of mesh 
size 1.2 mm from the mouth of River Malewa. The fish were caught 
by the fishermen then placed in aerated water tanks. They were then 
transported to Biological Sciences Department, Egerton University 
laboratory. In the laboratory, the fish were killed humanely by cervical 
dislocation. This was then followed by measurements of the total 
lengths (TL) in cm using a measuring board. The weight of the fish
was then measured in g using an electronic weighing scale (Model 
ED 4202S, Sartorius AG, Germany). The fish were varying in length 
and weight. Dissection was then done following standard procedures 
in parasitological analyses [23]. Where found, the cestode Ligula 
intestinalis was collected from the body cavity of the fish using plastic 
forceps. The parasites were thoroughly rinsed with double distilled 
water and placed in plastic vials then stored in the refrigerator at a 
temperature of -20 ºC for heavy metal determination. Thiswas followed 
by obtaining the fish tissues (0.2 g) using a ceramic knife and plastic 
tweezers, washed with double distilled water and then stored in the 
refrigerator for heavy metal determination. An image of L. intestinalis 
and its host E. paludinosus is shown in Figure 2.

Figure 1: Map of Lake Naivasha showing the sampling site.
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Heavy metal determinations in water, sediment, fi h muscle 
tissues and the parasites

The water, sediment, 25 fish muscle tissues of fish (5 infected with 
L. intestinalis and 20 non-infected) and 5 samples of L. intestinalis 
were transported to Lake Nakuru Water Quality Testing Laboratory 
(WQTL) for heavy metals analysis. According to APHA [24] standard 
method, 100 ml of the water sample was measured using a clean 
measuring cylinder and poured into a clean beaker. Thesample was then 
digested with 5 ml 69% concentrated nitric acid (Analytical grade) and 
then diluted with 50 ml of distilled water followed by heating on a hot 
plate stirrer at 440°C in a fume hood for one hour until the volume was 
reduced to approximately 25 ml. The sample was then allowed to cool. 
After cooling, it was filtered to a final volume of 100 ml using Whatman 
150 mm dia No.41 filter paper by washing out with distilled water, into 
100 ml volumetric flask ready for heavy analysis. The sediment sample 
was homogenized with mortar and pestle before processing then 2 g 
weighed which was digested and diluted the same way as the water 
sample. The same procedure was also followed for the fish tissues (0.2 
g) and parasites (0.1 g). The processed samples (of water, sediment, fis
muscle tissues and the cestode) in the 100 ml volumetric flasks were then 
taken to the Thermal-electron atomic absorption spectrophotometer 
(AAS- S series, United Kingdom) for heavy metal analysis. The
concentrations of the metals were determined in triplicates in order to 
check the accuracy of the instrument. A standard and a blank sample 
were run after every five samples to check instrumental drift. Standar
were prepared for instrument calibration by serial dilution of a working 
solution (100 mg/L) prepared from analytical grade stock solutions 
(1,000 mg/L) obtained from Merck KGaA, Germany. The calibration 
curve method was used to quantify the heavy metal concentrations. In 
order to get the recovery rates for each heavy metal, one extra sample 
from the water, sediment, fish muscle tissue and parasite was spiked. 
Therecovery rates shown were 96% for As, 105% for Hg, 98% for Cr and 
99% for Pb which were all within the recommended range.

Bioconcentration and bioaccumulation factors

Bioconcentration factors (BCF) were calculated to determine the 
ratio in element concentrations between fish and environment (water 
and sediment) according to the method by Otachi et al. [25]. The
BCF was calculated using the mean concentration values of each of 
the elements present in the fish muscle, water and sediment. The BCF 
calculations were also used to determine the partitioning of elements 
between different samples. The BCF was calculated as follow

BCF=C (fish muscle)/C (water)			                 (i)

BCF=C (fish muscle)/C (sediment)			   (ii)

Where, C stands for mean concentration. C (fish organ) and C 
(sediment) are measured in (mg/kg wet weight) while C (water) is 
measured in (mg/l).

The bioaccumulation factors (BAF) were determined using the 
formula by Drexler et al. [26] which is calculated as follows:

BAF (x, y)=Concentration of trace element in x/concentration of 
trace element in y

Where by, the variables x and y stand for matrices that are compared 
to each other, in this case, parasites (x) and fish muscle (y)

Risk assessment

In order to assess the risk brought about by the heavy metals 
to people who consume E. paludinosus in the area, the target hazard 
quotients (THQ) was determined for heavy metals. THQ is the ratio 
between the potential exposure to a substance and the reference dose, 
that is the level at which no adverse effects are expected [27]. A THQ that 
results to ≤ 1 indicates no significant risk to the health of fish consumers 
whereas that which is >1 indicates a possible health risk associated with 
the consumption of the respective metals within the fish muscle. In 
addition to that, a THQ of 0.1 was later suggested for noncarcinogens 
to account for additive effects [27]. The equation for determining THQ 
according to USEPA [27] is:

THQ=EFr × EDr × IRFa × C / RfDo × Bwa × AT

Where; EFr is the exposure frequency (350 days/year), EDr is the 
exposure duration (30 years), IRFa is the fish consumption per day 
(0.0123 kg/ day) since the per capita is 4.5 kg/year in Kenya [28], C 
is the metal concentration in the edible portion of fish (milligrams 
per kilogram wet weight (ww), RfDo is the reference dose, oral 
(milligrams per kilogram per day, according to the updated 2017 
Regional Screening Level (RSL) in the fish ingestion table [29], BWa is 
the body weight, adult 60.7 kg, for Kenya [30], and AT is the averaging 
time for noncarcinogens (365 days/year). The mean concentrations of 
heavy metals were additionally compared with FAO/WHO and EU 
recommended values.

Data analysis

Theheavy metals concentrations in various matrices are presented as 
arithmetic mean with standard deviation (mean ± standard deviation). 
Thedifferences in mean concentrations of heavy metals between the fish
and the parasite was tested using a t-test.

Results
Physico-chemical parameters

The physico-chemical parameters recorded on the sampling date 
for temperature (˚C), pH, dissolved oxygen (mg/L), dissolved oxygen 
saturation (% sat) and conductivity (µS/cm) were 18.16, 7.9, 7.93, 106.2 
and 129.44 respectively.

Heavy metal concentrations in water and sediment

Among the four heavy metals measured, two (As and Cr) were 
below detection in the water sample as indicated in Table 1. Pb was 
highest in concentration in both the water and sediment. Pb was also 
high in water than Hg (Table 1), while in the sediment the order was 
Pb>Cr>As>Hg (Table 2).

Figure 2: Photograph of E. paludinosus alongside its endoparasite, L. 
intestinalis.
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Heavy metal concentrations in E. paludinosus

A total of 1307 E. paludinosus were measured obtaining a mean 
length (± Standard Deviation) of 8.4804 ± 1.0407 and a mean weight 
of 6.2339 ± 2.4044 with a mean condition factor of 0.9727 ± 0.1497 
indicating that the fish were not in a good condition (k<1). In the fish
muscle sample, Pb had the highest concentration. The order of heavy 
metal concentration in the muscle of E. paludinosus was Pb>Cr>As>Hg 
(Table 3).

Target hazard quotients

Arsenic (As) had the highest THQ value followed by Hg then Pb 
while Cr had the least. The THQ values are shown in Table 4

Bioconcentration factors

Calculation of BCF values (Table 5) for heavy metals in water and 
sediment compared with tissues of E. paludinosus indicate that Pb 
and Hg levels were present in higher concentrations in the fish tissues 
compared to the water (BCF>1). Bioconcentration factors (BCF) could 
not be determined for As and Cr in water as these elements were below 
the detection limits of the instrumentation. As, Cr, Pb and Hg levels 
were also present in higher concentrations in the fish tissues compared 
to the sediment.

Bioaccumulation factors for heavy metals in E. paludinosus

Out of the 1307 fish sampled, only 5 were infected by the parasite 
(prevalence=0.4%), L. intestinalis with only 1 cestode recorded per 
infected fish giving a low parasite prevalence of 5 out of 1307 examined 
individuals infected. L. intestinalis contained systematically higher 
concentration of all the heavy metals than the host fish obtaining mean 
concentration (mg/kg) values of 3.54232, 38.0532, 7.797 and 1.59152 
for Hg, Pb, Cr and As respectively against the mean concentrations in 
the host tissues with values of 0.68924, 6.4936, 3.5646 and 0.66058 for 
the same respectively. All the four heavy metals showed BAF values>1 
(Figure 3). There were significant differences between the mean 
concentrations of the four heavy metals analyzed between the host and 
the parasite (t-test, p values<0.05).

Discussion
Physico-chemical parameters of water

The values of physico-chemical parameters obtained during the 
study were in agreement with those obtained by Otachi et al. [3] and 
Mutia et al. [8] except for the pH and conductivity which were lower 
than that of our study. This could be attributed to the rainy season at 
the time of sampling as well as the location of the study site where River 
Malewa empties its waters into the lake. The value of pH for this study 
was similar to that of Wanjau et al. [31,32] in Lake Naivasha. However, 
Ogendi et al. [32] reported lower values for conductivity and dissolved 
oxygen.

Trace element concentrations in water

Water sample analysis revealed that most elements were present 
in lower concentrations compared to those in the sediment and 
the fish muscle tissue. The Pb levels were however lower than those 
reported by Ogendi et al. [8] who recorded 0.17983 mg/L from the 
same lake. Ochieng et al. [1,9] on the other hand reported lower Pb 
concentrations of 0.0421 and 0.00016 mg/L respectively in the same 
lake. The high levels of Pb at the sampling point could be an indication 
that Pb is coming in from upstream through runoff. Other sources 
of Pb could be from anthropogenic activities such as farming as 
well as other particulates from natural sources. The comparison of 
concentrations of the heavy metals in water in Lake Naivasha with 
the Kenyan and WHO/FAO acceptable standards revealed that the Pb 
concentration in water was higher than that of as well as the WHO [33] 
maximum permissible level in drinking water. This is an indication that 
the lake may be polluted with Pb. In this study, As and Cr were below 
the detection limit of instrumentation hence below the WHO/FAO 
and KEBS standards contrary to the findings of Yang et al. [9] who 
reported for other Kenyan rift valley lakes. He reported levels of As: 
0.0227, 0.00608 and 0.00125 mg/L in Lakes Elementaita, Nakuru and 
Bogoria. Cr on the other hand was detected in Lake Elementaita while 
it was below detection limit in Lakes Nakuru and Bogoria as well as in 
Lake Naivasha during this study. The Hg levels were within the KEBS 
drinking water limits. The Pb levels reported for Lake Naivasha in this 
study were higher than that of Lakes Elementaita, Nakuru and Bogoria 
by Yang et al. [9].

Trace elements concentrations in sediments

The heavy metal levels obtained during this study were compared 
with the LEL, TEC, SEL and Shale values as shown in Table 2. The Pb 
levels were lower than those reported by Mutia et al. [8] but higher 
than those reported by Otachi et al. [3] in the same lake. High Pb levels 
reported in the sediment samples could be as a result of contamination 
from the catchment. Cr values recorded were higher than those 
reported by Ochieng et al. [1]. To the best of our knowledge, this is 
the first report of As and Hg in the sediment of this lake. All the four 
heavy metals had concentrations of below the LEL, TEC, SEL and 
the Shale values of sedimentary rocks (considered to be the normal 
background level in the Earth’s crust) [10] and therefore showing no 
sign of pollution.

Trace element concentrations in E. paludinosus muscle tissues

Each of the four heavy metals concentration in the fish muscle 
tissue is as discussed briefly below

Pb: Pb was the highest in concentration in the fish muscle tissue 
compared to the other three heavy metals (As, Cr and Hg). The Pb 
levels in the muscle tissue of E. paludinosus obtained in this study were 
lower than those of Mutia et al. [8] in the common carp (Cyprinus 
carpio) from Lake Naivasha, with a mean concentration (± SD) of 
58.11 ± 0.050 mg/kg ww (wet weight). However, Wanjau et al. [31,32] 

Element Water (mg/l) LLD WHO limits(mg/l) KEBS (mg/l) Elementaita Nakuru Bogoria
As BD 0.001 0.01 0.01 0.0227 0.00608 0.00125
Cr BD 0.01 0.05 0.05 0.00015 N. D N. D
Pb 0.076 0.004 0.01 0.01 0.00021 0.00025 0.0008
Hg 0.001 0.0005 - 0.001 0.0139 0.00286 0.0103

B.D: Below detection limit, N.D: Not Detected WHO: World Health Organization [33], KEBS: Kenya Bureau of Standards [50].

Table 1: Heavy metal concentrations for water samples (with lowest limits of detection -LLD) and comparison with the WHO and KEBS limits in comparison with other Rift 
Valley Lakes [9].
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recorded lower Pb levels in various fish from Lake Naivasha. For 
example, Ogendi et al. [32] reported 0.073 ± 0.002 mg/kg ww in C. 
carpio while Wanjau et al. [31] reported 1.49, 1.56, 1.51 and 3.22 mg/kg 

ww in Oreochromis leucostictus, C. carpio, and Micropterus salmoides 
respectively. However, the Pb levels reported in this study were above 
both the WHO/FAO and EU [34] maximum permissible level and 
therefore not safe for human consumption as it can cause neurological 
damage, anemia, nerve disorders, and a number of other health 
problems [8]. The THQ value of Pb was 65.8863 which was very high 
thus a health risk to the consumers of this fish from Lake Naivasha

Cr: The Cr levels recorded in this study were higher than those 
reported by Yi et al. [35] in two fish species (Coreius guichenoti and 
Leptobotia elongate) where, both the two-fish species had 0.805 mg/kg 
ww from the middle and lower reaches of the Yangtze River basin in 
China. A lower amount of Cr was also recorded by Ahmed et al. [36] 
on five fish species from Buriganga river, Bangladesh (For example, C
level of 18.84 ± 1.72 mg/kg ww in the muscle tissue of Labeo rohita) 
[37]. Zhang et al. [38] also reported low levels of Cr in Crucian carp 
(3.36 ± 0.0036 mg/kg) from Honghu Lake in China as compared to this 
study. The THQ of value of Cr was 42.9138, hence potentially posing a 
risk to the consumers of this fish from the lake. This is because Cr can 
cause damage to the gastrointestinal, respiratory, and immunological 
systems, as well as reproductive and developmental problems [7].

Hg: THg concentration in E. paludinosus obtained in this study 
were higher than those reported by Campbell et al. [39] of 0.081 mg/kg 
in the same fish from the same lake. Yi et al. [35] also reported a lower 
mean concentration of THg in Eriocheir sinensis from the middle and 
lower reaches of the Yangtze River basin recording 0.054 mg/kg ww. 
Additionally, Stanek et al. [37,40] reported lower values (0.19 ± 0.13 
and 0.27 ± 0.03 mg/kg ww) in the muscles of Chrysichthys nigrodigitatus 
and Crayfish (Orconectes limosus) from Weija Dam on the Densu River 
and Lake Gopło, Poland respectively. Our findings were similar to 
those of Andreji et al. [41] who reported 1.53 ± 0.80 mg/kg ww in the 
Wels catfish from Lower Nitra River (Slovakia). The THQ value for Hg 
was 90.1086 which indicates a huge risk to the consumers as Hg can 
cause severe damage to the brain and kidneys [7]. In addition to that, 
the levels of Hg were found to be above both of the WHO/FAO and EU 
maximum permissible levels making the fish unsafe for consumption

As: The levels of As recorded in this study were high compared to 
those of Yi et al. [35] in the fish (Rhinogobio typus) reporting a mean 
concentration of 0.039 mg/kg ww, from the middle and lower reaches of 
the Yangtze River basin in China. Lower levels of As were also reported 
by Ahmed et al. [36] in Labeo rohita from Buriganga river, Bangladesh 
recording 0.73 ± 0.03 mg/kg ww. Gbogbo et al. [37,38] reported lower 
levels of As in Chrysichthys nigrodigitatus and yellow catfish from Weija 
Dam on the Densu River and Honghu Lake in China recording (0.37 
± 0.24) and (0.0040 ± 0.0042) mg/kg ww respectively, with the yellow 
catfish recording detectable amounts of As among the six fish species 
in the study. The THQ value of As was 98.5066. Large oral doses of As 
can cause death while lower doses can cause decreased production of 
red and white blood cells [7].

Bioconcentration

The results showed that heavy metal concentrations were higher 
in E. paludinosus than both in water and sediment. BCF values are 
important because they serve as both an indication of how many 
times greater a pollutant is in the biota compared to the environment 
and also as a means of determining the partitioning between fish and 
the environment [42]. The BCF values for As and Cr could not be 
calculated for water compared to the fish muscle as they were below 
detection limits of the instrumentation. The higher concentrations of 
the heavy metals in the fish muscles compared with the sediment could 

As Cr Pb Hg
RfDo 0.0003 0.003 0.004 0.0001
THQ 98.5066 42.9138 65.8863 90.1086

Table 4: Target hazard quotients (THQ) for the four heavy metals in E. paludinosus 
fish from Lake Naivasha (RfDo, reference dose, oral according to USEPA [29]

Element Fish/Water Fish/Sediment
As N. D 29.65
Cr N. D 14.82
Pb 1.27 2.86
Hg 2.96 28.63

N.D.: <Detection limit

Table 5: BCF values calculated between mean trace element concentrations in 
water and sediment and compared to E. paludinosus muscles from Lake Naivasha.

Element Sediment (mg/kg) LEL TEC SEL Shale
As 0.171 6.0 9.79 33.0 13
Cr 1.49 26.0 43.4 110.0 90
Pb 15.82 31.0 35.8 250.0 20
Hg 0.054 0.2 0.18 2.0 -

LEL: lowest effect level in sediment, TEC: threshold effect concentration in 
sediment, SEL: severe effect concentration in sediment [51].

Table 2: Heavy metal concentrations for sediment samples in comparison with 
Sediment Quality Guidelines.

Element E. paludinosus FAO/WHO EU
As 5.07 ± 2.74 - -
Cr 22.09 ± 17.90 - -
Pb 45.21 ± 29.45 0.3 0.3
Hg 1.55 ± 1.80 0.5 0.5

Food and Agriculture Organization (FAO)/World Health Organization (WHO) [11]; 
European Union (EU) [34]

Table 3: Trace element concentrations in the muscle of E. paludinosus fish in Lake 
Naivasha: values are means (mg/kg wet weight) compared with FAO/WHO and 
EU standards (n=20).

Figure 3: Bioaccumulation factors (BAF) for heavy metals in L. intestinalis 
vs fish muscle tissue (n=5)
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be explained by the process of sedimentation of the soil particles that 
are contaminated by the heavy metals from the catchment whereby the 
heavy metals get absorbed by the fish before the soil particles settle at 
the bottom of the lake.

Potential of Ligula intestinalis as a bioindicator

A low number of L. intestinalis infections in E. paludinosus in this 
study was recorded obtaining 5 of 1307 (prevalence=0.4%) examined 
individuals infected. Similarly, L. intestinalis prevalence reported by 
Britton et al. [43] in Lake Naivasha was low, with only 7 of 8665 examined 
individuals infected between the years 2002-2008 (prevalence=0.1%). 
The heavy metal with the highest concentration in L. intestinalis was 
Pb. Compared to the host’s muscle in our study, the concentrations 
of Hg, Pb, Cr and As in L. intestinalis were 5.1395, 5.8601, 2.1873 and 
2.4093 times higher, respectively. From these results, it was evident 
that L. intestinalis has ability to accumulate heavy metals. These results 
are similar to the findings by Tenora et al. [44] on L. intestinalis from 
the body cavity of three cyprinid fish species (Abramis brama, Rutilus 
rutilus, Blicca bjoerkna) which accumulated greater levels of Pb, Cr 
and Cd than in the fish muscle recording bioaccumualation factors of 
15.0, 6.0 and 2.6 respectively. However, Tenora et al. [44] found higher 
bioaccumulation factors than that of our study. The accumulation 
ability of Pb and Cr by this parasite in the present study was lower 
than that in the Rastreneobola argentea/L. intestinalis host-parasite 
system reported by Oyoo‐Okoth et al. [45] from Lake Victoria, Kenya. 
They reported BAF values of 11.6 and 10.8 for Pb and Cr, respectively 
with mean concentrations in water of 9.20 and 3.54 for Pb and Cr 
respectively. Elsewhere, cestodes have been found to accumulate heavy 
metals at concentrations that are orders of magnitude higher than 
those in the host tissues or the environment [46-48]. For instance, the 
bioaccumulation factor of a different cestode parasite, Bothriocephalus 
scorpii from the fish Scophthalmus maximus from the coast of Gdansk, 
Poland reported very high values than that of its fish host, with values 
ranging between 60 and 150 for Pb [49-51]. In as much as other heavy 
metals burdens have been found in other fish such as O. leucostictus 
from Lake Naivasha, the bioaccumulation factors of their parasites 
such as the nematode Contracaecum multipapillatum were not higher 
than in this study recording 2.94, 1.58, 1.96, and 7.04 for Fe, Cd, Cu, 
and Pb respectively with mean concentrations of 24800, 0.34, 11.5 and 
12.5 mg/kg dry weight in the sediment [3]. Thus, in comparison with 
nematodes, the capacity of the cestode L. intestinalis to accumulate 
these heavy metals is higher. The only limitation of L. intestinalis as 
a bioindicator is its low prevalence and abundance so far experienced 
during this study.

Conclusion
The heavy metal concentrations were highest in the parasite 

followed by the fish muscle tissues, then the sediment and least in 
water. As and Cr were below the detection limit of instrumentation 
in water. The four heavy metals levels in the sediment were below the 
LEL, TEC, SEL and the Shale values of sedimentary rocks indicating 
no sign of pollution. Pb concentrations were high in the fish muscle 
tissue compared to the other three elements. The levels of Pb and Hg 
in the fish were above the FAO/WHO and EU maximum permissible 
limits hence not safe for consumption. The THQ values for As, Cr, Pb 
and Hg were high and this could put at risk the health of the people 
that depend on this fish species as their regular source of protein. The
four heavy metals showed bioaccumulation factors (BAF) values of>1 
thus indicating the potential of L. intestinalis in accumulation of heavy 
metals from the host (E. paludinosus) thereby rendering the parasite 
sensitive metal accumulation biomonitor than its fish host
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