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Abstract
Depending on the time of its occurrence, toxicity from cancer therapy is classified as acute or delayed. Acute 

toxicity develops during or shortly after completion of treatment. It is often temporary and usually can be managed 
by conservative means. Delayed toxicity occurs months or years after treatment and is often permanent. The 
underlying processes of many delayed toxicities are not well understood, thus limiting the scope for their treatment 
and management. Delayed toxicities may exhibit severe manifestations that can affect a patient’s quality of life 
significantly. This report reviews some late complications of head and neck after radiation therapy and relevant 
dose-response information.
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Introduction
Depending on the stage and extent of the disease, when treating 

head and neck cancer, radiation therapy (RT) can be used either as 
the primary treatment modality in combination with chemotherapy, 
as adjuvant therapy following surgical resection, or for palliation. 
Regardless of the clinical intent, RT produces tissue changes that may 
profoundly affect patients’ quality of life later. Toxicities from radiation 
therapy (RT) for head and neck cancers are classified as early (acute) 
or late (delayed) effects based on the time course of their development 
relative to the RT. Early effects develop during the course of RT or 
shortly after completing RT (about 2-3 weeks) and usually subside 
thereafter. Late effects manifest months to years after completing RT.

Although organ sparing is an important consideration when 
selecting surgical methods, treatment techniques, and fractionation 
schedules for the treatment of head and neck cancers, anatomical 
preservation of organs does not necessarily translate into functional 
preservation. Preservation of function depends on multiple factors, 
including radiation dose and fractionation, which play a major role in 
the occurrence of radiation morbidities. 

Late side effects of RT for head and neck cancers include xerostomia, 
osteoradionecrosis, soft tissue fibrosis, carotid artery injury, trismus, 
dysphagia, esophageal toxicity, myelitis, pituitary-hypothalamic 
dysfunction, thyroid disease, ocular toxicity and ototoxicity. This 
article presents a short review of delayed complications after RT for 
head and neck cancers.

Xerostomia
Parotid gland

Parotid glands produce 60% to 70% of the total stimulated 
salivary output along with other glands. Submandibular, sublingual, 
and other small salivary glands contribute primarily to unstimulated 
(resting) salivary production [1]. Radiation damage to the parotid, 
submandibular, and minor salivary glands can lead to xerostomia. 
Serous parotid glands are suggested to be more susceptible to radiation 
damage than nonserous submandibular, sublingual, and minor salivary 
tissue. Salivary tissue effects include loss of acinar-cells; alterations in 

duct epithelium, fibrosis, and fatty degeneration [2]. Compromise in 
salivary function can be seen 1 to 2 weeks into the course of RT and 
may persist thereafter. Unless the damage is severe, salivary function 
often recovers within 2 years after RT [3,4] and may even over shoot 
(recovery>100%). While post-RT xerostomia may improve with time, 
it is still the most common delayed complication of radiation therapy 
and chemotherapy for head and neck cancers. Xerostomia can have a 
negative effect on quality of life by greatly impairing a patient’s ability 
to speak, chew, swallow, and taste.

The magnitude of dysfunction is related to dose and the volume of 
salivary tissue irradiated. Minimal gland dysfunction can be observed 
at mean doses of 10 to 15 Gy and mean doses >40 Gy to the parotid can 
result in a 75% reduction in function [3,5]. One imaging study observed 
a decline in salivary function at even lower doses [6]. Reduction in 
saliva production was observed to occur in a more or less linear fashion 
with dose. A linear correlation with 5% loss of function per 1 Gy of 
mean dose to the parotid with no threshold has been reported. The 
TD 50/5 for the parotid (that is, the uniform dose resulting in a 50% 
complication probability at 5 years) was 38 to 46 Gy, with gradual 
improvement in parotid flow after radiotherapy [7]. The dysfunction is 
considered to be irreversible at doses >54 Gy [2].

It is suggested that sparing of at least one parotid gland or a 
submandibular gland may reduce the risk of xerostomia [8]. When 
the mean dose of at least one parotid gland was kept ≤ 26 Gy, the 
incidence of xerostomia was significantly reduced and could return 
back to pretreatment levels when the mean dose was <25 to 30 Gy [3,9]. 
Patients receiving <30 Gy to the contralateral parotid experienced no 
xerostomia or mild subjective xerostomia [10]. A complete recovery of 
salivary production is suggested to be possible when the volume of the 
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contralateral parotid receiving a mean dose >40 Gy is 33% [11]. A recent 
review of literature suggests limiting the mean dose to one parotid to 
20 Gy or that of both glands to 25 Gy to avoid severe xerostomia (long-
term salivary function of <25% of baseline) [12]. 

Submandibular gland 

Doses to both the parotid and submandibular glands were 
significant on multivariate analysis for patient-reported xerostomia 
[8]. Both stimulated and unstimulated salivary flow rates were observed 
to decrease exponentially with dose to the submandibular glands 
[13]. Dose modeling for the submandibular gland suggested that the 
submandibular gland may be more radioresistant than the parotid. 
Both stimulated and unstimulated flow rates were observed to recover 
2 years after RT when the mean dose was ≤ 39 Gy [13].

Osteoradionecrosis

Osteoradionecrosis (ORN) is defined as the exposition of 
devitalized bone in a previously irradiated area, without histological 
evidence of tumor recurrence, occurring within 3 to 6 months after 
RT. Vascular obliteration from RT and reduced vascular supply leads 
to hypovascular areas with associated tissue hypoxia and subsequently 
ORN. Although it is usually diagnosed within months of RT, it may be 
diagnosed years after RT in some patients [14]. It may manifest as a 
small, asymptomatic bone exposure that remains for months to years 
and heals with conservative management, or it may gradually progress, 
leading to fistulas and infections with severe necrosis requiring surgical 
intervention and reconstruction [15,16]. 

The incidence of mandibular ORN in head and neck cancer patients 
managed with radical or postoperative irradiation has varied widely in 
the literature, ranging from 0.4% to 56% [17]. Suggested approximate 
overall lifelong risk of ORN for patients who have undergone high-
dose RT for head and neck tumors is 15% [2]. A systematic review 
of 43 articles published between 1990 and 2008 reported a weighted 
prevalence of ORN by type of RT treatment as follows: conventional 
radiotherapy, 7.4%; intensity-modulated radiotherapy (IMRT), 5.1%; 
chemoradiation (CRT), 6.8%; and brachytherapy, 5.3% [2,15]. The 
risk factors for ORN include primary site, T stage, proximity of tumor 
to bone, poor dentition, type of treatment (i.e., external-beam RT, 
brachytherapy, surgery, and chemotherapy), RT dose, and acute and 
chronic injury or trauma (i.e., surgery, dental extractions, infection) to 
the mandible or maxilla.

The mandible is the most common site of ORN, partly due to its 
vicinity to tumors of the oral cavity and oropharynx and partly because 
the blood supply may be less abundant relative to the maxilla [16]. 
One study reported an 85% incidence of ORN in dentulous patients 
and 50% of adentulous patients at doses >75 Gy and none for <65 Gy 
[18]. Another study reported that only 6.6% of patients with ORN at 
doses <65 Gy underwent resection, while the rest were manageable by 
conservative means, and they reported an incidence around 40% for 
doses >65 Gy that required resection [19]. ORN is essentially reported 
to occur at cumulative doses ≥ 66 Gy on the mandible (standard 
fractionation) applied to a significant volume [20]. Mandibular ORN 
is almost never seen below 60 Gy with conventional fractionated 
RT [21]. Maxillary osteonecrosis is rare and usually seen in cases 
of nasopharyngeal cancer [5]. RT doses >70 Gy were found to be 
significant for maxillary ORN [5].

Radiation Fibrosis
Radiation fibrosis (RF) describes the insidious pathologic fibrotic 

tissue sclerosis that often occurs in response to radiation exposure. The 
term radiation fibrosis syndrome (RFS) describes the myriad clinical 
manifestations of progressive fibrotic tissue sclerosis that result from 
radiation treatment [22]. The development of radiation-induced 
fibrosis is influenced by multiple factors, including the radiation dose 
and volume, fractionation schedule, previous or concurrent treatments, 
genetic susceptibility, and co-morbidities such as diabetes mellitus. 
Contrary to the original assumption that radiation-induced fibrosis 
is a slow, irreversible process; contemporary studies suggest that it is 
not necessarily a fixed process [23]. Depending on the tissue, fibrosis 
is generally associated with total radiation doses of >40 Gy in both 
connective and vascular tissues and with total radiation doses of 60 
Gy or higher [23]. RT-induced fibrosis may result in muscle stiffening, 
immobility, pain, and, in severe cases, flexion contractures. Trismus is 
a frequent late morbidity in head-and-neck patients that is caused by 
inflammation and fibrosis of muscles of mastication [24].

Trismus
Trismus is defined as a tonic contraction of the muscles of 

mastication and results in restricted mouth opening [25]. It is 
attributed to a combination of fibrosis of the muscles of mastication, 
spasm, and contraction of muscles responsible for the movement of 
the temporomandibular joint [26]. The precise mechanism that leads 
to trismus is unknown, but exposure of the temporomandibular joint 
(TMJ), pterygoid muscle, and massater muscle to high-dose radiation 
is suggested [27]. Fibrosis of the pterygoid (medial, lateral), temporalis, 
and masseter muscles gradually leads to trismus [28]. 

While the commonly used functional definition of reduced mouth 
opening is an interincisor distance of ≤ 35 mm, a 20 mm to 40 mm 
interincisor distance is suggested as indicative of trismus [25]. A severe 
limitation is defined as distances of 18 to 20 mm [24,29]. Severity of 
trismus is associated with configuration of fields, radiation source, and 
radiation dose [30]. 

The reported incidence of post-RT trismus varies significantly from 
6% to 86% of patients receiving radiation to the temporomandibular joint 
(TMJ) and masseter/pterygoidmuscle, or both, with variable severity 
[26,31]. A lower incidence of approximately 5% has been observed with 
newer techniques using IMRT (Itensity Modulated Radiation Therapy) 
that minimize the dose to the TMJ and muscles of mastication [32]. A 
systematic review of the literature on post-RT trismus found a mean 
incidence of 25% in patients treated with conventional RT and 30.7% 
for patients treated with RT and chemotherapy [26]. 

A steep dose-effect relationship between mean dose to the masseter 
and pterygoid muscles and the probability of trismus has been observed. 
In one study, a 47% incidence of trismus in cancer patients following 
>55 Gy to the masseter, pterygoid muscles, or both was observed [33]. 
Another study reported a 24% increase in the probability of trismus 
for every 10 Gy in the pterygoid muscle after a dose of 40 Gy [34]. A 
limiting dose of 50 Gy to the TMJ is suggested to prevent trismus [32].

Late Esophageal Toxicity: Stricture and Dysphagia
Dysphagia is the inability to swallow safely or efficiently. Severe 

dysphagia necessitates an indwelling gastrostomy tube (GT), which 
may cause infection and weight loss. Patients may suffer sensory loss 
in the laryngeal and pharyngeal structures, leading to absence or 
reduction in the cough reflex, subjecting patients to a high risk of silent 
aspiration.

Dysphagia after CRT may be related to a number of issues including 
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mucositis and severe dysfunction of the base of tongue, larynx, and 
pharyngeal muscles [35,36]. CRT results in an increased severity of side 
effects compared with RT alone [37]. There is an approximately 12% 
to 21% incidence of symptomatic strictures [37,38] and 50% to 64% 
incidence of dysphagia after CRT in patients with oral, pharyngeal, and 
laryngeal squamous cell carcinoma [38,39].

Formation of fibrosis is considered the primary source of post-
RT dysphagia [40]. The National Institute of Health (NIH) Laryngeal 
Study Section presented preliminary data that has allowed for an 
improved understanding of the neuromuscular etiology of chronic 
dysphagia after CRT [41,42]. The formation of strictures after CRT has 
also been linked to the development of dysphagia [37]. The suggested 
structures for predicting complications related to swallowing include 
superior, middle, and inferior pharyngeal constrictor muscles, the 
cricopharyngeous muscle, 1 cm of the muscular compartment of the 
esophageal inlet [43], and the glottis and supraglottic larynx [44].

In one prospective study, the mean dose to pharyngeal constrictors 
and the partial organ dose for both the constrictors and larynx 
correlated significantly with the occurrence of aspiration [44]. The 
volume of larynx and inferior constrictor receiving ≥ 50 Gy were 
statistically associated with aspiration and stricture, and the mean 
larynx dose was statistically associated with aspiration [45]. Dose to 
the superior constrictor has also been found to be strongly significant 
[45,46]. A dose-volume analysis presented dose-volume parameters 
for the inferior pharyngeal constrictor (IPC) and cricoid pharyngeal 
inlet (CPI) that would decrease the risk of dysphagia and gastrotomy 
tube as follows: IPC V65<15%, IPC V60<40%, IPV mean<55 Gy, and 
CPI Dmax<60 Gy [47]. In another study, the probability of a swallowing 
disorder increased 19% per 10 Gy after 55 Gy to the superior constrictor 
muscle. With a mean dose of 51 Gy, 48 Gy, and 32 Gy to the superior, 
middle, and inferior constrictor muscles, respectively, an overall 
probability of incidences of 2%, 10%, 20% and 50% were estimated at 
22 Gy, 44 Gy, 55 Gy, and 74 Gy to the superior constrictor muscle using 
a logistic model. Brachytherapy (20 to 22 Gy) to the primary site (base 
of tongue) was significant on multivariate analysis [43]. An increased 
incidence of dysphagia [37,48] and aspiration [44] (after CRT has 
been observed). A relationship between xerostomia and dysphagia 
is suggested [48], and a mean radiation dose to the parotid gland of 
approximately 26 Gy or less should be the goal to reduce the risk of 
both toxicities [49].

Arterial Injury
Carotid artery and delayed cerebrovascular consequences

Carotid atherosclerosis usually remains undetected until symptoms 
associated with arterial stenosis or occlusion occurs. In a dataset of 910 
patients subjected to between 40 and 50 Gy of cervical irradiation, 
the incidence of stroke was 6.3%, abnormal phonoangiograms (an 
average of 5 years after neck irradiation) was 25%, and abnormal 
oculoplethysmogram was 17% [50]. The mean dose for patients with 
abnormal carotid phonoangiography was 39.4 Gy. This study did not 
specify the estimated dose to parts of the carotid in the field. In another 
series, 30% of patients who received ≥ 50 Gy had moderate to severe 
carotid disease when examined by duplex scanning 28 months after 
RT, which was 5-fold higher than the unirradiated group [51]. The 
severity of disease did not seem to correlate with the radiation dosage 
[52,53]. The time interval between RT and manifestations of symptoms 
of cerebral vascular insufficiency shows significant variation between 
1-34 years [54,55].

Carotid artery blowout (CB) is a rare but serious complication 
of salvage reirradiation [56] and postoperative catastrophe in the 
irradiated neck, especially with trifurcate incision [50]. Predisposing 
factors include surgery, diabetes mellitus, and prolonged corticosteroid 
use.

Pituitary-Hypothalamic Dysfunction
High doses of definitive external-beam RT to the hypothalamic 

pituitary axis (HPA) during the treatment of pituitary tumors [57], 
nasopharyngeal malignancies [58,59] and primary brain tumors 
[60] may lead to hypopituitarism. Hypopituitarism has also been 
observed after prophylactic cranial irradiation for acute lymphoblastic 
leukemia [61] and following total body irradiation (TBI) [62]. Both the 
pituitary and hypothalamus may be affected by radiation leading to 
hypopituitarism [63,64]. Development of RT-induced hypopituitarism 
is insidious and its effects are diverse and complex because of a wide 
variety of combined hormonal deficiencies that may occur. 

The extent and time of onset of HPA dysfunction after fractionated 
RT depends upon total dose, fractionation, CRT, and volume of HPA 
subjected to radiation [57,65]. The onset of biochemical hormonal 
deficiency has been reported as early as 1 month to 1 year after 
RT [66]. Lam et al. [58] have reported on the overt expression of 
hypopituitarism 2 to 5 years after RT with a median latent interval of 
3.8 years. Low doses around 20 Gy can cause growth hormone (GH) 
deficiency. Higher doses of 30 to 50 Gy will lead to deficiencies in 
thyroid-stimulating hormone, adrenocorticotropic hormone, and 
gonadotropin. Deficiency of one or more hormones with rapid onset of 
symptoms usually occurs with higher doses or larger radiation fraction 
sizes [57]. However, another study reported a lower incidence of 
anterior pituitary deficiencies with large doses (>45 Gy) [67]. Surgical 
manipulation prior to RT may influence the risk of HPA deficit [57]. 
Risk factors for HPA dysfunction include concomitant irradiation of 
the hypothalamus [68], higher dose [68,69], and larger baseline tumor 
volume in cases of nonfunctioning adenomas [70].

HPA dysfunction is believed to be more likely in the pediatric 
patient population than in adults [71,72]. A decrease in GH response 
to growth-hormone-releasing hormone (GHRH) was observed in 
pediatric patients who received total body irradiation (TBI) to12 Gy in 
5 fractions. TBI represents a unique setting in which both the central 
(HPA) and peripheral (endocrine) glands are exposed to radiation. A 
direct effect of radiation to the endocrine organs was suggested to be 
the primary contributing factor to endocrine dysfunction [73]. A GH 
deficiency and reduction in height was reported in pediatric patients 
who received 12 Gy in 6 fractions [74], yet another study did not find 
any primary deficit 2 to 11 years after irradiation [75].

Thyroid Dysfunction
Thyroid dysfunction can result from direct radiation damage 

to the thyroid, known as primary hypothyroidism (PH), or direct 
functional damage to the HPA, known as central hypothyroidism 
(CH) subsequent to hypopituitarism. PH is the most common delayed 
morbidity in patients undergoing cervical neck node RT to doses of 30 
to 70 Gy [76]. The reported incidence of PH varies significantly from 
3% [77] to 47% [78], although most investigators report an incidence 
of 20% to 30% [76]. The occurrence of PH also varies, with some 
studies reporting clinical hypothyroidism while others report chemical 
hypothyroidism or subclinical hypothyroidism without manifestations 
of clinical/overt hypothyroidism. 

Although PH can develop after doses as low as 20 Gy, the incidence 
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of HP after 30 to 45 Gy to the thyroid is more commonly documented 
[79-81]. The association between the total dose to the thyroid and an 
increased risk of PH is reported in some studies [82-84] and disputed 
in others [85]. The percentage of volume receiving >30 Gy (v30) is 
suggested as a possible predictor of PH [86].

Ocular Toxicity
Delayed radiation-induced damage to components of the visual 

system results in morbidities varying in severity and latency. Most 
common delayed morbidities of the ocular system include cataracts, 
chronic dry eye syndrome, retinopathy, and optic neuropathy. Iris 
neo vascularization, secondary glaucoma, strabismus, scleral atrophy, 
scleral necrosis, choroidal neo vascularization, and, less commonly, 
globe perforation, have also been observed [87-89].

Radiation-induced cataracts are often described as posterior sub 
capsular cataracts (PSCs). Irradiation of mitotically active cells in 
the germinative zone leads to cell death, compensatory mitosis, and 
differentiation into fiber cells resulting in defective lens-fiber formation, 
and migration to the posterior pole [90]. The severity of cataract 
formation is related to total dose and fractionation [91]. Cataract 
formation usually occurs within 2 to 3 years (range, 6-64 months) [92]. 
A threshold for detectable opacity has been suggested to be 2 Gy in 
a single exposure [93]. In one study, the adult lens was observed to 
tolerate a total dose of 5 Gy after fractionated RT [94], while another 
study reported that radiation-induced cataracts generally occur at 
doses >8 Gy to 10 Gy [95].

Dry eye refers to a conglomerate of chronic symptoms resulting 
from the effects of radiation on the conjuctival epithelium, goblet cells, 
corneal surface, and lacrimal glands. Changes in quality and quantity 
of tear production lead to impairment of the dynamic stability of the 
tear film resulting in chronic dry eye [96]. For doses >45 Gy, symptoms 
of dry eye developed within 1 month after radiation, and corneal 
opacification and vascularization were observed in 9 to 10 months [96]. 
Another study reported on the median time to manifestation of corneal 
injury to be 9 months (range, 1-31 months) [97]. A 58% incidence of 
keratitis for doses ≤ 40 Gy and a 30% incidence of dry eye for doses 
>40 Gy were reported in one study [97]. Parsons et al. [96] observed a 
19% incidence for doses ≤ 45 Gy and 100% for doses >57 Gy. For doses 
between 30 and 39 Gy, Bessell et al. [98] noted a 4.5% incidence of dry 
eye, increasing to 23% for doses ranging from 40 to 49 Gy.

Non proliferative retinopathy (NPR) is the early form of radiation-
induced retinopathy (RIRN) and involves capillary and arterial damage 
that may lead to capillary closure, retinal ischemia, necrosis of nerve 
tissue, and fibrovascular proliferation [92,99,100]. Capillary closure 
may lead to severe capillary non perfusion and ischemia resulting in 
neovascularization in the retina, often referred to as “proliferation 
radiation retinopathy” (PRR) [100,101]. With a median of 1.5 to 2 
years, the latency for clinical manifestations of RIRN varies from 7 
months to 8.5 years [102,103]. For patients receiving doses between 45 
to 55 Gy to half or more of the retina, Parsons et al. [96] were reported 
an incidence of 53%; excluding patients with diabetes mellitus, 
chemotherapy, and high dose-per-fractions, it was 22%. The upper 
limit of a safe dose was suggested to be 35 Gy in one early study [104], 
but cases of retinopathy have been reported after doses as low as 20 
Gy [105-107] and have been associated with intensive chemotherapy 
in conjunction with RT, diabetes mellitus, and Grave’s disease. The 
incidence of RIRN increases with the total dose received by the retina 
and increased fraction sizes above the standard fraction size of 1.8 to 
2.0 Gy [102]. Hyper fractionation was associated with a lower incidence 
of RIRN [102].

The effect of radiation on the optic nerve is not fully understood. 
Vascular, cytopathic chromosomal, and auto allergic factors have been 
considered [108-111]. The reported incidence of radiation-induced 
optic neuropathy (RION) after fractionated RT was 10.6% by Parsons 
et al. [89] and 8.8 % by Bhandare et al. [112]. With a median latency of 
28 to 30 months, the latency of RION shows significant variation (from 
7 months to 14 years) [89,97, 112]. The incidence of RION increases 
with an increase in the total dose to the optic nerve >55 Gy using 
conventional fractionation [89,97,112], although optic chiasmal injury 
at 50 Gy has been observed [97]. Fraction sizes exceeding the standard 
fraction size of 1.8 to 2.0 Gy have been associated with the incidence of 
RION [89, 112]. A possible benefit of hyper fractionation for reducing 
the incidence of RION has been suggested [112].

Ototoxicity
RT-associated delayed morbidities in the auditory system can affect 

the external ear (i.e., necrosis of pinna, chronic otitis externa, external 
auditory canal stenosis, osteonecrosis of the external auditory canal), 
the tympanic membrane (thickening of the tympanic membrane and 
sclerosis), the middle ear (i.e., Eustachian tube dysfunction, chronic 
otitis media with effusion, conductive hearing loss, fibrosis of the 
middle ear, ossicular atrophy), and the internal ear (i.e., labyrinthitis, 
canal paresis, vertigo balance problems, sensorineural hearing loss 
(SNHL)).

Early studies exhibited a tolerance dose for chronic external otitis 
between 65 and 70 Gy [113,114] with another study showing a 5% 
increased risk for each 5 Gy increase with doses > 50 Gy to the external 
ear. An association between dose and incidence of chronic external 
otitis, atrophy, and canal stenosis was reported above 55 Gy to the 
external ear [115]. 

The incidence of tympanic membrane perforation and otitis media 
with effusion (OME) increased above doses of 50 Gy to the middle 
ear [115]. Radiation dose has been associated with deterioration of 
the passive opening function of the Eustachian tube. A dose to the 
isthmus of the Eustachian tube below 52 Gy and a dose to the middle 
ear cavity below 46 Gy are reported to decrease the incidence of OME 
[116]. Another study reported deceased OME with a dose to the middle 
ear cavity and isthmus of the Eustachian tube below 47 Gy [23]. The 
reported incidence of sensory-neural hearing loss varies significantly 
from 0% to 54% [27,117-119]. 

High-frequency (≥ 4 KHz) hearing loss is more prevalent than 
low-frequency hearing loss (0.5-3 KHz) [118,120]. Sensory-neural 
hearing loss has been reported to occur after a total dose as low as 30 
Gy [121]. Several studies have reported a total dose to the inner ear 
above which incidences of SNHL increased. These include 40 Gy (at 2 
Gy per fraction) [120], 45 Gy (fractionation unspecified) [122], a mean 
cochlear dose of 48 Gy delivered by either conventional RT or IMRT 
followed by a twice-daily boost [123], and 50 Gy delivered at 1.8 to 3.0 
Gy per fraction [124].

Nervous System
Brain

Temporal lobe necrosis (TLN) can be a serious and potentially life-
threatening late RT complication in nasopharyngeal cancer patients 
[125,126]. Patients with stage III or IV disease often present with 
extensive base of the skull invasion or cavernous sinus involvement. A 
definitive radiation dose between 66 and 70 Gy given to the gross tumor 
volume and 54 to 60 Gy to the clinical target volume often exposes 
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parts of the temporal lobes to doses over 60 Gy, thereby increasing the 
risk of TLN.

The reported incidence of TLN ranges from 1% and 6% at 10 years 
after conventional fractionation and can be 35% in 3.5 years after 
accelerated fractionation to 71.2 Gy [126-131]. Although relatively 
rare, radiation-induced TLN is reported to be responsible for 65% of 
radiation-related deaths in patients with nasopharyngeal carcinoma 
[55,132].

The development of radiation-induced TLN is associated with total 
radiation dose, fractionation schedule, and possibly the administration 
of chemotherapy [133]. Different fractionation schemes were 
compared using a biologically effective dose (BED) with an α/β ratio 
of 3[134]. With standard fractionation, side-effect incidences of 5% 
and 10% occur at BEDs of 120 Gy (range, 100-120 Gy) and 150 Gy 
(range,140-170 Gy), respectively (corresponding to 72 Gy (range 60-
84) and 90 Gy (range 84-102) in 2 Gy fractions). With twice-daily 
fractionation, the occurrence of toxicity increases sharply when the 
BED is >80 Gy. For a once-daily large fraction size (>2.5 Gy), the 
incidence and severity of toxicity is unpredictable. 

Brainstem
Depending on the location of the tumor, the dose to the 

brainstem can be critical in the treatment of head and neck cancers. 
Symptoms of brain stem injury include motor, sensory, and cerebellar 
dysfunctions or a complex combination of the three [135]. Radiation-
induced brainstem damage may be seen as bulbar palsy, ataxia, 
trigeminal and facial cranial neuropathy, hearing loss, hemianopsia, 
and hemihypesthasia [136]. Development of symptoms may occur 
3 months to 9 years after RT and can result in death [135-137]. The 
common toxicity criteria of cancer therapy evaluation program 
(CTEP) grades brainstem injury on the basis of symptoms [138]. The 
planning constraints used to limit brainstem injury shows significant 
variation. For treatment with megavoltage X-rays they include absolute 
volume at a dose of 65 Gy (AV65) to <3 ml and AV60 to <5 ml with 
twice-daily fractionation [139], maximum dose <50 Gy [140], dose 
to 1% volume (D1%) of ≤ 54 Gy [141], AV55 to <0.1 cc [142], and, 
for particle treatment, they are as follows: surface ≤ 63 Cobalt Gray 
Equivalent (CGE) and center ≤ 54 CGE [116] and surface ≤ 64 CGE 
and center ≤ 54 CGE [135,143]. It has been suggested that the entire 
brainstem may be treated to 54 Gy using conventional fractionation 
with a limited risk of severe or permanent neurological effects [144]. 
Smaller volumes of brainstem may be irradiated to a maximum dose of 
59 Gy for dose fractions ≤ 2 Gy [145].

In one large study involving skull-base tumors treated with 
megavoltage photons and protons, multivariate analysis revealed that 
the risk of brainstem toxicity significantly increased with AV60>0.9 
mL CGE, the number of surgical procedures, and the prevalence of 
diabetes or high blood pressure, while univariate analyses revealed an 
association with brainstem Dmax>64 CGE, AV50>5.9 ml, and AV55>2.7 
ml [135]. Median doses of 63.1 CGE (range, 49.6-68.1 CGE) and 48.5 
CGE (range, 15.8-63.3 CGE) to the surface were tolerable in another 
study [116].

Myelitis
The term radiation myelopathy in the radiation of the head and 

neck includes 2 distinct clinicopathological entities: (1) a common 
but mild and transient subacute myelopathy and (2) a less-common 
catastrophic delayed progressive myelopathy. Spinal cord neoplasm 
and vascular malformations have also been associated with therapeutic 
radiation [141].

Transient myelopathy occurs between 1 and 30 months after RT 
with peak onset at 4 to 6 months [146,147] and manifests as parethesias 
or an “electric shock” sensation radiating down the spine (L hermitte’s 
phenomenon). The condition resolves gradually over 1 to 9 months 
and has been observed in patients receiving a total spinal dose of>50 
Gy and a daily fraction size of >2 Gy [148].

Severe delayed radiation myelopathy usually begins 9 to 15 months 
after RT with parethesias and other sensory disturbances that progress 
into motor signs within 2 to 4 years after RT [149,150]. Clinical signs 
and symptoms include a combination of motor and sensory deficits 
depending on the location of cord injury. The signs and symptoms of 
radiation myelopathy may be nonspecific and include a diminished 
sense of proprioception, temperature sensation, and minor motor 
weakness, and they may progress to gait, incontinence, Brown-Sequard 
syndrome, hyperreflexia, plegia, paresis, spasticity, and Babinski 
sign. If the damage occurs at the upper cervical level, it can be fatal 
[151]. When radiation is delivered by standard fractionation of 1.8 
to 2.0 Gy per fraction, the risk of delayed cervical myelopathy is no 
more than 0.3% after a total dose of 45 to 50 Gy and approximately 
5% after total doses of 57 to 61 Gy [133,152-156]. An evidence-based 
recommendation is that the tolerance dose of the spinal cord in 2 Gy 
per fraction is 50 Gy (BED2=100 Gy; EQD2/2=100 Gy) and represents 
a low risk of permanent myelopathy [149,157,158]. For reirradiation 
with standard fractionation, investigators recommend a cumulative 
BED2 ≤ 100 to 120 Gy and EQD2/2 ≤ 50 to 60 Gy [159].

Cranial nerve palsy and peripheral nerve plexopathies

Muscle fibrosis of the neck, total radiation dose, hypo fractionation 
technique, and use of chemotherapy are suggested to be significant 
factors in the development of plexopathies of cranial and brachial nerve 
palsy (CNP) [128,124]. In addition to a detailed history, a physical 
examination is needed to exclude recurrence-induced CNP. Additional 
assessments or extended follow up (6–12 months) may be required for 
diagnosis of RT-induced CNPs [160,161]. Reported incidence rates of 
RT-induced cranial and/or sympathetic nerve palsies in the literature 
varies widely, from 0.4% to 47% [126,130,162-164]. Cranial nerves 9, 
10, 11, and 12 are the most commonly affected by RT to the head and 
neck [126,128,129,162,164]. CNPs of the 3rd, 4th, 5th, and 6th nerves have 
also been reported [119,165]. CNP can appear between 1 and 19 years 
after completing RT [166,167]. A review of the published literature 
suggests that the use of doses per fraction in the range of 2.2 to 4.58 Gy 
with total doses between 43.5 to 60 Gy can cause a significant risk of 
brachial plexopathy ranging from 1.7% to 73%. The risk of plexopathy 
was <1% for regimens with a dose per fraction between 2.2 and 2.5 Gy 
to tal doses between 34 and 40 Gy [168].

Conclusion
Radiation-induced toxicity is a major cause of long-term disability 

after cancer treatment. Late toxicities can be life-threatening or 
significantly erode the patient’s quality of life and functional status. 
The difficulties of accurately assessing and quantifying the risks and 
severity of late toxicities stem from competing risks of disease-related 
morbidity and mortality and loss to follow-up.
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