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Introduction
If Θ is a circular random variable, Θ ∈(0,2π), then the circular 

density function based on nonnegative trigonometric sums (the NNTS 
density), developed by Fernandez-Duran [1] and based on Fejer [2], is 
expressed as 
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where 1i = − , Ck are the complex numbers Ck = Crk + Icck  for k = 0,…,M,

and k rk ckc icc = −  is the conjugate of Ck. The following constraint in the 
c parameter is imposed to f(θ;M,c) to integrate one: 
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With cc0 = 0 and cr0 ≥ 0, i.e., c0 is a nonnegative real number. The total 
number of c free parameters is equal to 2M. Also, M is the total number 
of terms in the sum that defines the NNTS density, which is equal to 
the maximum number of the modes of the density and is an additional 
unknown parameter. 

Equivalently, the NNTS density can be expressed as 
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− = ∑  for k = 1,2,…,M. Note that for the NNTS

family, the k-th trigonometric moment is equal to E(eikθ) = ak + ibk. The 
case M = 0 corresponds to a uniform circular density on (0,2π). The 
NNTS family of circular distributions is very flexible to model datasets 
that present multimodality and/or skewness. 

The accumulated distribution function of an NNTS density is easily 
calculated as: 
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The original support of the NNTS circular distribution is the 
interval (0,2π), but in applications that are related to the occurrence of 
events over time, it is more common to use as support the interval (0,1). 
In that case, we transform the variable Θ to the variable T by 2T π

Θ=
with the density function 
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and the distribution function 
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For t∈(0,1). In the case that M = 0 the NNTS distribution is 
equivalent to a uniform distribution and fT(t;M=1) = 1 and fT(t;M=0) 
= t  for t∈(0,1). 

For the case of grouped data n1,n2,…,nR where ni is the total number 
of the occurrences of the event of interest in the i-th interval, (Ri-l, Ri) in 
which (0,1) has been partitioned, i = 0,1,..,R, we consider that there are 
R such intervals. For example, in the case of using a year as the unit of 
time and months as the intervals, Ri-l and Ri are the beginning and end, 
respectively, of the i-th month in yearly terms and R = 12. In the case of 
grouped data, the likelihood function, 1 2( )RL M c n n … n, , , , , is given by 
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Additional properties of the NNTS circular models are presented 
by Fernandez-Duran [1,3]. The maximum likelihood estimates of the 
parameters of the NNTS model are obtained using an efficient Newton-
like algorithm that was developed by Fernandez-Duran [4] and 
implemented in the statistical software R [5] in the library CircNNTSR 
[6,7]. 

   Previous work on homogeneity tests for circular data includes that 
of Mardia and Spurr [8] for l-modal and axial von Mises distributions 
with modes separated by a constant arc. In addition, Mardia [9] 
developed tests against shift-type alternatives, based on uniform scores 
as an extension of Wheeler and Watson [10]. In particular, Rao’s test of 
homogeneity [11,12] tests for the equality of the mean directions and 
dispersions of N circular populations by considering the means of the 
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Abstract
Testing for the homogeneity of density functions of circular random variables is useful in many settings including the 

study of wind patterns, paleocurrents trends, the seasonality in human-related events such as homicides and suicides 
and the seasonality in the appearance of diseases. In this paper, we considered that the density functions are members 
of the flexible family of circular distributions based on nonnegative trigonometric (Fourier) sums (series) developed by 
Fernandez-Duran [1]. We constructed a test based on the likelihood ratio and we applied the proposed test to simulated 
and real datasets. 
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the dispersions [13]. Watson’s two-sample test of homogeneity uses 
the squared differences between the sample distribution functions 
as test statistic [14]. Tests for the equality of the mean directions and 
dispersion parameters of von Mises populations that were developed 
by Mardia [9], Watson and Williams [15], Stephens [16], Watson [17], 
and Fisher [18] are similar to the homogeneity tests. Similarly, Harrison 
et al. [19,20], Stephens [21,22] have developed two-way and multi-way 
ANOVAs for circular data. Recently, Grimshaw et al. [23], Chen et 
al. [24], and Fu et al. [25] developed homogeneity tests for mixtures 
of von Mises distributions using likelihood ratio tests. In contrast to 
previous work that used von Mises or mixtures of von Mises densities 
as the population densities, the main objective of the present paper 
was to develop a likelihood ratio test for the homogeneity of circular 
populations by considering their density functions as members of the 
flexible NNTS family for ungrouped and grouped observations.

This paper is divided into five sections, including this introduction. 
The second section outlines the development of the likelihood ratio test 
for homogeneity. In the third section, the proposed test is applied to 
simulated and real datasets. The fourth section includes a simulation 
exercise to study the type I error and power of the proposed test. Lastly, 
in the fifth section, the conclusions of the present work are presented. 

Likelihood ratio homogeneity test

Ungrouped observation: Let θk = (θk1,θk2,…, )
kknθ for k = 1,…,N 

be independent random samples from N different continuous circular 
populations, and let Fk(θ) and fk(θ) be their respective distribution 
(density) functions. A test of homogeneity has a null hypothesis 
given as 0 1 2 0 1 2( )N NH F F … F H f f … f: = = = : = = = and an alternative 
hypothesis given as Ha: F1,…,FN are not all the same (Ha: f1,…,fN  are 
not all the same). By considering that for k = 1,…,N, Fk(fk) is a member 
of the NNTS family of the circular distributions with parameters Mk 
and ck, a test for homogeneity can be constructed by considering the 
likelihood ratio, . This ratio is defined as 
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where 0 10( )NL M …c θ θ, , ,  is the maximum of the likelihood function 
over the restricted parameter space specified by H0, and c0 is the 
maximum likelihood estimate under the null hypothesis. Note that we 
are considering that Mk = M0 for k = 1,…,N and that the value of  M0 
is specified before applying the test. The researcher can select a value 
for M0 by considering the maximum number of modes in all of the 
considered populations (taking into account the sample sizes in each 
population) because the NNTS models are nested with respect to the 
increasing values of the parameter M. Now, 0 1( )NL M c …θ θ, , ,  is the 
maximum of the likelihood function over the complete parameter space, 
and 1( )Nc …c c= , ,  are the unrestricted maximum likelihood estimates 
that corresponds to the unrestricted maximum likelihood estimate for 
the parameter c  in each of the N considered circular populations. The 
likelihood function for the ungrouped data under the null hypothesis 
is calculated as 
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where 0 0( )ikf M cθ ,  is the common NNTS circular density function 

M0 Population 1 Population 2 Populations 1 and 2 -2ln(Λ) d.f. χ2p-value
0 -91.8939 -91.8939 -183.7877
1 -72.8523 -71.1008 -144.1506 0.3949 2 0.8208
2 -68.7839 -66.1711 -135.5405 1.1710 4 0.8829
3 -68.2188 -65.0110 -134.3438 2.2281 6 0.8976
4 -65.6811 -64.7347 -133.2813 5.7310 8 0.6773
5 -64.6047 -64.6029 -132.6212 6.8271 10 0.7417
6 -63.9279 -64.4850 -131.9476 7.0695 12 0.8530

Table 1: Results of the NNTS likelihood ratio test for homogeneity when applied to two samples of 50 data points from a von Mises population with µ = 3.1962 and κ = 
1.5510.

M0 Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 Pop. 6 Pop. 7 Pops. 1 to 7 -2ln(Λ) d.f. χ2p-value
0 -91.8939 -91.8939 -91.8939 -91.8939 -91.8939 -91.8939 -91.8939 -643.2570
1 -90.7435 -90.8332 -91.8541 -91.8634 -91.2191 -91.6372 -91.8033 -642.4010 4.8942 12 0.9614
2 -89.6939 -89.4777 -91.3742 -89.0410 -91.2099 -91.2177 -88.7269 -641.9138 22.3450 24 0.5587
3 -88.4427 -89.3987 -89.9833 -88.9220 -90.0088 -88.3413 -86.7960 -640.5025 37.2196 36 0.4127
4 -86.8474 -88.8507 -89.9685 -86.4008 -89.3175 -87.7075 -86.7055 -639.4287 47.2615 48 0.5030
5 -84.6353 -88.3876 -86.1472 -85.5370 -87.7413 -87.0995 -86.5498 -637.6810 63.1670 60 0.3651
6 -84.1664 -83.5998 -85.8473 -85.5001 -87.7211 -85.1840 -83.3282 -636.9619 83.2302 72 0.1720

Table 2: Results of the NNTS likelihood ratio test for homogeneity when applied to seven samples of 50 data points from a circular uniform distribution.

M0 1951-1970 1971-2008 1951-2008 -2ln(Λ) d.f. χ2 p-value
0 -360.2239 -766.3947 -1126.6190
1 -250.9487 -530.7715 -781.7269 0.0134 2 0.9933
2 -213.7020 -456.5898 -671.3008 2.0180 4 0.7324
3 -203.8207 -431.7584 -636.8067 2.4552 6 0.8734
4 -196.9491 -424.7851 -626.3378 9.2072 8 0.3251
5 -191.2163 -419.8673 -615.7329 9.2986 10 0.5040
6 -191.1102 -415.6410 -612.2737 11.0450 12 0.5251
7 -190.5867 -415.3392 -611.7719 11.6920 14 0.6310
8 -189.7132 -414.9694 -611.6512 13.9372 16 0.6034
9 -189.3480 -413.3788 -610.6316 15.8096 18 0.6058
10 -188.1896 -413.3687 -610.3693 17.6220 20 0.6123

Table 3: Results of the NNTS homogeneity test for the hurricane data.

Season 
Winter 50 120 190 210 220 250 260 290 290 320 320 340 
Spring 0 20 40 60 160 170 200 220 270 290 340 350 

Summer 10 10 20 20 30 30 40 150 150 150 170 190 290  
Autumn 30 70 110 170 180 190 240 250 260 260 290 350 

Table 4: Wind directions in degrees at Gorleston, England [26].
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for all of the observations in all of the considered populations. The 
likelihood under the complete parameter space corresponds to 
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where 0( )ik kf M cθ ,  corresponds to the NNTS circular density of the k-th 
population, with parameters M0 and ck. Maximizing 0 1( )NL M c …θ θ, , ,
is equivalent to maximizing each of the 0( )k k kL M cθ , likelihood 
functions for each population, with respect to the corresponding ck 
parameters for k = 1,…,N. 

By the likelihood asymptotic theory, −2ln(Λ) converges to a 
chi-squared distributed random variable with a number of degrees 
of freedom that is equal to the difference in the number of the free 
parameters in the unrestricted and restricted parameter spaces. 

Grouped observations: In the case that the observed data consists 
of grouped observations, i.e., only the total number of occurrences of 
the circular random variables in the different intervals is observed, 
then, the likelihood function for the null hypothesis of homogeneity 
is calculated as 

0 0
0 10

1 1 1 0 0

( )
( )

( )

ki
k

n
IN

ki
N

k i k i

F R M c
L M n …c n

F R M c= = , −

 , −
, , , =   , 

∏∏   (11)

where nki is the total number of observations of population k in the 
i-th interval in population k, (Rk,i-1, Rki). The total number of grouping
intervals for population k is denoted by Ik. Note that the grouping
intervals may be different for each population. The likelihood function
for the whole parameter space is given by
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In practice, the grouping intervals are commonly the same for all of 
the observed populations. 

Examples
Ungrouped simulated data

Simulated von mises data: A random sample of 100 observations 
from a von Mises density, with a location parameter µ=3.1962 and a 
dispersion parameter =1.5510, was generated. We divided the dataset in 
two. The first dataset included the first 50 observations, and the second 
included the last 50 observations. The results of applying the NNTS 

homogeneity likelihood ratio test to these datasets are included in Table 
1. The NNTS models of order M0 = 0,1,…,6 were fitted to each dataset
of 50 observations (Population 1 and Population 2) and to the complete
dataset of 100 observations (Populations 1 and 2). The columns in Table
1 contain the values of the maximized log-likelihood, the observed value
of the likelihood ratio statistic (−2ln(Λ)), the number of the degrees of
freedom (d.f.), and the corresponding p-values when comparing the
observed test statistic with the distribution of a chi-squared random
variable. For M0 = 1,2,…,6, the observed values of the NNTS likelihood
ratio statistic resulted, as expected, in the decision of not rejecting the
null hypothesis of homogeneity.

Simulated circular uniform data: We generated seven random 
samples of 50 data points from a circular uniform distribution. Table 
2 contains the results of the NNTS likelihood ratio test. For all of the 
considered values of M0, the null hypothesis of homogeneity was not 
rejected. 

Ungrouped real data
Hurricane occurrence data: Recently, there has been debate 

about whether an increase exists in the number of tropical storms and 
hurricanes that occur yearly in the North Atlantic Ocean. Instead of 
analyzing the possibility of an increase in the number of tropical storms 
and hurricanes, we analyzed whether there is evidence of a change in 
the start date of the tropical storms and hurricanes. The starting dates of 
the tropical storms and hurricanes were obtained from http://weather.
unisys.com/archive/index.html. This website includes tropical storms 
and hurricanes that occurred between 1851 and 2008 and is based 
on the HURDAT database of the National Oceanic and Atmospheric 
Administration (NOAA). The dates were converted to numbers 
between 0 and 1 to represent the fraction of the year that elapsed at the 
starting date of the tropical storm or hurricane. These values were then 
multiplied by 2π to convert them to circular data. Then, we compared 
the starting dates of the storms that occurred between 1951 and 1970 to 
those that occurred between 1971 and 2008. Table 3 contains the results 
of the NNTS homogeneity test. For all of the considered values of M0, 
we did not reject the null hypothesis of homogeneity. 

Wind direction data: Mardia and Jupp [26] analyzed a dataset of 
the wind directions in degrees at Gorleston, England, between 11 a.m. 
and 12 p.m. on Sundays in 1968, as classified by seasons. The data is 
shown in Table 4. 

The authors applied a homogeneity test to the data based on the 
ranks of the angles and the uniformity test of Rayleigh, known as the 
uniform scores test [27], to this dataset. They concluded that the null 
hypothesis was rejected at the 5% level (p-value=0.046). We applied the 
NNTS homogeneity test to this dataset, and the results are shown in 
Table 5.  

M0 Winter Spring Summer Autumn Combined -2ln(Λ) d.f. χ2  p-value
0 -22.0545 -22.0545 -23.8924 -22.0545 -90.0560
1 -19.9543 -21.6284 -22.1090 -21.3295 -89.1455 8.2486 6 0.2205
2 -19.5298 -19.5591 -18.7057 -20.6901 -86.5384 16.1075 12 0.1864
3 -18.9205 -19.3480 -15.0076 -20.5220 -83.9955 20.3948 18 0.3110
4 -17.3523 -18.3262 -14.5950 -18.0935 -83.5365 30.3392 24 0.1738
5 -16.9660 -17.7181 -11.9490 -17.0136 -83.0619 38.8305 30 0.1296
6 -16.9440 -16.5327 -11.7001 -16.5227 -82.8683 42.3377 36 0.2163

Table 5: NNTS homogeneity tests: Results for the wind directions dataset [26].

M0 set 1 set2 combined set (1 and 2) -2ln(Λ) d.f. χ2 p-value
0 -45.9469 -191.1392 -237.0861
1 -41.4898 -176.0237 -218.5734 2.1199 2 0.3465
2 -38.9377 -169.1353 -215.9945 15.8430 4 0.0032
3 -38.3024 -168.9135 -215.8106 17.1893 6 0.0086
4 -37.0521 -168.4393 -215.4071 19.8314 8 0.0110
5 -36.9842 -168.2582 -215.3776 20.2705 10 0.0268
6 -36.3596 -168.2576 -215.3653 21.4962 12 0.0436

Table 6: NNTS homogeneity tests results for the cross-bed measurements from the Himalayan molasse dataset [29].
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In contrast to the uniform score test results of Mardia and Jupp [26], 
we did not reject the null hypothesis of homogeneity for the considered 
values of M0. This contrast may be due to the small sample sizes. Mardia 
and Jupp [26] also analyzed this dataset using the von Mises model 
and concluded that it was not possible to reject the null hypotheses 
of equal mean directions and equal concentration parameters. Fisher 
[28] also analyzed this dataset. By applying a uniform score test for the
Winter, Spring, and Autumn data, Fisher concluded that there was little
evidence that the wind distributions in these three seasons differed.

Himalayan molasse data: Fisher [28] analyzed two samples of 
cross-bed measurements that were collected from the Himalayan 
molasse in Pakistan [29]. The first sample consisted of 35 measurements 
of the Rakhi Nala ripple cross-beds, and the second sample consisted 
of 104 measurements of the Chaudhwan Zam large bedforms. Fisher 
suggested that the samples were drawn from von Mises distributions 
with different shapes but not necessarily with different mean directions 
and applied a bootstrap method test for different means. Fisher did 
not find evidence that the mean directions differed. The results of the 
NNTS homogeneity test are shown in Table 6. For the selected M0 
values equal to 2 and 3, the null hypothesis of homogeneity was rejected 
at the 1% significance level. For M0 = 4,5 and 6, the null hypothesis was 
rejected at the 5% significance level, and for M0 = 1, the null hypothesis 
was not rejected because the p-value was equal to 0.3465. This example 
illustrates the necessity to select a sensible value for M0 before applying 
the test.

Grouped real data

Suicides and homicides data: The Mexican Statistical Agency 
(INEGI) reports the monthly number of suicides and homicides in 
Mexico every year. To compare the monthly patterns of the number of 
suicides and homicides, we applied the NNTS homogeneity test for the 
monthly numbers of suicides and homicides for the years of 2005 and 
2007. Table 7 shows the monthly grouped raw data. 

Table 8 shows the results of applying the NNTS homogeneity test 
to the number of suicides and homicides in Mexico in 2005. The null 
hypothesis of homogeneity was rejected at the 5% significance level 

when using M0 = 1,2,3,4,5 and 6. Note that the case M0 = 6 corresponds 
to the saturated model. 

For the data from the year 2007, Table 9 shows the results of the 
NNTS homogeneity test where, for M0 = 1,2,4, and 6 the test did not 
reject the null hypothesis of homogeneity. Only for M0 = 3 was the null 
hypothesis of homogeneity rejected at the 5% significance level. The 
change in the seasonal patterns of suicides and homicides from 2005 to 
2007 may be the result of the mis-reporting, over-reporting, or under-
reporting of these crimes. 

Power and type I error of the NNTS test of homogeneity
To study the power of the NNTS test of homogeneity and its type 

I error rate, we simulated data from three different models: a uniform 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Suicides 2005 318 335 370 360 428 367 366 386 390 342 331 320

% 7.37 7.77 8.58 8.35 9.92 8.51 8.49 8.95 9.04 7.93 7.67 7.42
2007 284 303 416 391 413 392 383 383 350 367 354 355

% 6.47 6.90 9.47 8.90 9.41 8.93 8.72 8.72 7.97 8.36 8.06 8.08
Homicides 2005 776 776 819 859 822 889 817 792 837 814 825 881

% 7.83 7.83 8.27 8.67 8.30 8.97 8.25 7.99 8.45 8.22 8.33 8.89
2007 595 508 781 775 935 757 740 764 713 768 708 797

% 6.73 5.75 8.83 8.77 10.58 8.56 8.37 8.64 8.06 8.69 8.01 9.01

Table 7: Suicides and homicides in Mexico for the years of 2005 and 2007.

M0 Suicides 2005 Homicides 2005 Suicides and Homicides 2005 -2ln(Λ) d.f. χ2 p-value
0 -10717.05 -24620.57 -35337.62
1 -10707.97 -24620.20 -35333.37 10.40 2 0.0055
2 -10706.07 -24618.29 -35331.64 14.56 4 0.0057
3 -10705.13 -24618.17 -35331.44 16.28 6 0.0123
4 -10702.36 -24614.96 -35327.69 20.74 8 0.0079
5 -10701.89 -24611.23 -35324.31 22.38 10 0.0133
6 -10701.56 -24609.14 -35323.52 25.64 12 0.0121

Table 8: NNTS homogeneity test results: Suicides and homicides in Mexico in 2005.

M0 Suicides 2007 Homicides 2007 Suicides and Homicides 2007 -2ln(Λ) d.f. χ2 p-value
0 -10907.41 -21949.65 -32857.06
1 -10896.88 -21931.98 -32829.40 1.08 2 0.5827
2 -10891.65 -21903.18 -32798.34 7.02 4 0.1348
3 -10888.55 -21895.23 -32790.39 13.22 6 0.0397
4 -10886.79 -21892.36 -32785.85 13.40 8 0.0988
5 -10886.16 -21883.11 -32777.17 15.80 10 0.1055
6 -10886.10 -21882.93 -32777.14 16.22 12 0.1814

Table 9: NNTS homogeneity test results: Suicides and homicides in Mexico in 2007.
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Figure 1: Considered models in the simulation study (Uniform (solid), von Mises 
(dot dash) and NNTS with M = 4 (dash)).
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NNTS test

Model 1 n1 Model 2 n2 α M0 = 1 2 3 4 5 6 7 8 9 10 Watson Rao 
Mean

Rao 
Disp.

Uniform 20 von Mises 20 0.01 100 100 100 100 25 92
0.05 100 100 100 100 51 100
0.1 100 100 100 100 59 100

50 0.01 100 100 100 100 60 100
0.05 100 100 100 100 79 100
0.1 100 100 100 100 91 100

100 0.01 100 100 100 100 88 100
0.05 100 100 100 100 94 100
0.1 100 100 100 100 95 100

NNTS 20 0.01 100 100 100 100 56 79
0.05 100 100 100 100 75 95
0.1 100 100 100 100 81 97

50 0.01 100 100 100 100 77 100
0.05 100 100 100 100 91 100
0.1 100 100 100 100 94 100

100 0.01 100 100 100 100 96 100
0.05 100 100 100 100 99 100
0.1 100 100 100 100 99 100

Uniform 50 von Mises 20 0.01 100 100 100 100 29 93
0.05 100 100 100 100 50 100
0.1 100 100 100 100 62 100

50 0.01 100 100 100 100 100 100 100 67 100
0.05 100 100 100 100 100 100 100 82 100
0.1 100 100 100 100 100 100 100 89 100

100 0.01 100 100 100 100 100 100 100 91 100
0.05 100 100 100 100 100 100 100 98 100
0.1 100 100 100 100 100 100 100 100 100

NNTS 20 0.01 100 100 100 100 51 77
0.05 100 100 100 100 76 96
0.1 100 100 100 100 83 98

50 0.01 100 100 100 100 100 100 100 81 100
0.05 100 100 100 100 100 100 100 93 100
0.1 100 100 100 100 100 100 100 95 100

100 0.01 100 100 100 100 100 100 100 100 100
0.05 100 100 100 100 100 100 100 100 100
0.1 100 100 100 100 100 100 100 100 100

Uniform 100 von Mises 20 0.01 100 100 100 100 31 92
0.05 100 100 100 100 54 100
0.1 100 100 100 100 63 100

50 0.01 100 100 100 100 100 100 100 73 100
0.05 100 100 100 100 100 100 100 85 100
0.1 100 100 100 100 100 100 100 90 100

100 0.01 100 100 100 100 100 100 100 100 100 100 100 95 100
0.05 100 100 100 100 100 100 100 100 100 100 100 97 100
0.1 100 100 100 100 100 100 100 100 100 100 100 100 100

NNTS 20 0.01 100 100 100 100 63 78
0.05 100 100 100 100 77 95
0.1 100 100 100 100 82 98

50 0.01 100 100 100 100 100 100 100 87 100
0.05 100 100 100 100 100 100 100 95 100
0.1 100 100 100 100 100 100 100 98 100

100 0.01 100 100 100 100 100 100 100 100 100 100 100 99 100
0.05 100 100 100 100 100 100 100 100 100 100 100 100 100
0.1 100 100 100 100 100 100 100 100 100 100 100 100 100

von Mises 20 NNTS 20 0.01 0 0 0 2 0 6
0.05 5 3 5 12 3 8
0.1 7 4 10 23 9 13

50 0.01 1 0 3 5 0 1
0.05 3 1 10 12 4 9
0.1 9 8 18 17 10 14

100 0.01 0 0 2 3 1 2
0.05 1 2 15 15 4 5
0.1 7 7 29 20 5 17

von Mises 50 NNTS 20 0.01 0 1 2 2 0 7
0.05 7 6 16 15 4 10
0.1 18 12 27 20 13 15

50 0.01 3 2 11 18 14 12 5 0 1
0.05 10 14 29 34 27 30 23 5 6
0.1 16 24 46 50 41 36 28 10 15

100 0.01 3 6 24 32 38 17 12 1 5
0.05 11 27 45 59 55 48 28 5 7
0.1 24 33 64 68 66 59 41 12 14

von Mises 100 NNTS 20 0.01 3 1 3 4 0 6
0.05 11 7 7 13 3 11
0.1 19 12 25 22 8 13

50 0.01 4 8 17 19 17 19 7 2 1
0.05 17 19 41 47 38 30 26 5 5
0.1 28 30 49 59 53 49 32 13 10

100 0.01 9 11 32 50 42 40 30 27 24 19 11 0 2
0.05 20 30 59 69 67 65 60 57 47 46 29 5 6
0.1 28 40 72 81 79 74 68 66 65 59 42 12 12

Table 10: NNTS homogeneity test: Statistical power.
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NNTS test
Model n1 n2 α M0 = 1 2 3 4 5 6 7 8 9 10 Watson Rao Mean Rao Disp.

Uniform 20 20 0.01 0 0 0 3 1 2
0.05 0 0 0 6 3 9
0.1 0 0 0 10 8 13

20 50 0.01 0 0 0 2 2 3
0.05 0 0 0 4 5 9
0.1 0 0 0 10 11 14

20 100 0.01 0 0 0 2 0 5
0.05 0 0 0 6 3 10
0.1 0 0 0 11 8 14

50 50 0.01 0 0 0 0 0 0 0 0 0
0.05 0 0 0 0 0 0 4 7 3
0.1 0 0 0 0 0 0 7 14 9

50 100 0.01 0 0 0 0 0 0 1 2 2
0.05 0 0 0 0 0 0 2 5 4
0.1 0 0 0 0 0 0 7 8 9

100 100 0.01 0 0 0 0 0 0 0 0 0 0 1 1 1
0.05 0 0 0 0 0 0 0 0 0 0 4 8 4
0.1 0 0 0 0 0 0 0 0 0 0 10 13 10

von Mises 20 20 0.01 0 1 0 1 2 0
0.05 2 4 1 8 5 7
0.1 2 6 5 11 7 13

20 50 0.01 0 1 0 1 2 0
0.05 4 2 2 3 5 5
0.1 9 5 5 9 6 11

20 100 0.01 0 0 0 2 0 5
0.05 1 2 3 7 2 8
0.1 2 8 4 11 5 11

50 50 0.01 0 0 0 0 0 1 0 0 5
0.05 1 3 3 5 3 2 7 2 8
0.1 6 3 9 8 5 9 13 5 9

50 100 0.01 2 3 1 1 1 0 1 1 2
0.05 6 8 9 3 5 4 9 4 7
0.1 11 10 13 14 14 10 13 10 14

100 100 0.01 1 0 0 1 0 0 0 1 4 4 2 0 1
0.05 6 7 5 3 4 4 3 5 6 9 8 5 3
0.1 11 13 14 11 11 7 10 8 10 10 12 11 11

NNTS 20 20 0.01 1 0 1 1 0 2
0.05 6 3 2 6 6 8
0.1 12 8 6 9 11 15

20 50 0.01 1 0 0 2 0 7
0.05 6 1 7 8 4 12
0.1 7 5 11 10 8 16

20 100 0.01 0 0 0 0 0 5
0.05 3 1 1 2 2 9
0.1 7 3 5 8 12 17

50 50 0.01 4 0 0 1 1 1 3 0 3
0.05 9 6 5 7 4 2 7 6 11
0.1 17 14 14 12 10 5 14 14 15

50 100 0.01 3 0 0 0 0 1 0 0 1
0.05 5 6 8 7 6 2 6 7 10
0.1 10 16 11 12 8 9 11 13 13

100 100 0.01 1 0 1 0 2 1 3 3 1 3 0 0 0
0.05 4 2 3 4 7 5 5 8 4 5 8 2 8
0.1 11 6 7 9 14 12 15 14 12 11 12 8 15

Table 11: NNTS homogeneity test: Type I errors. 

circular distribution, a von Mises distribution with µ = 3.1962, and κ 
= 1.5510, and NNTS density with M = 4. Figure 1 presents the graphs 
for the considered models. We generated 100 simulated datasets of 
sample sizes equal to 20, 50, and 100 for each of the three models. 
When comparing the simulated datasets from the different models, we 
studied the power of the test (the probability that the test will reject 
a false null hypothesis of homogeneity), and when comparing the 
simulated datasets from the same model, we studied the type I error of 
the test (the probability that the test will reject a true null hypothesis of 
homogeneity). 

Table 10 contains the values of the power of the test that were 
obtained from simulating 100 different datasets for the considered 
models, applying the NNTS homogeneity likelihood ratio test and 
counting the number of times that the NNTS test correctly did not 
reject the null hypothesis of homogeneity for the different values of 
M0 and the statistical significance of 1%, 5% and 10%. For comparison 
purposes, we also applied Watson’s two-sample test of homogeneity 
and Rao’s test of homogeneity for the mean directions and dispersions 
using the R library circular [30]. When we tested a uniform population 

against a von Mises or NNTS population, the NNTS and Watson’s 
tests gave 100% correct decisions, but Rao’s test had a lower level of 
power specifically when testing for the equality of mean directions. The 
results when using Rao’s test are a consequence of the fact that the mean 
values of the simulated models are very similar (see Figure 1); however, 
there are also cases with low power when testing for the equality of 
dispersions using Rao’s test. When comparing von Mises and NNTS 
populations in two datasets that have a sample size equal to 20, Watson 
and Rao’s tests have higher power than the NNTS test. By increasing the 
sample sizes, the power of the NNTS test increases much more quickly 
than the Watson’s test and Rao’s test. When both sample sizes are equal 
to 100, the NNTS has a much higher power than Watson’s test and Rao’s 
test. Generally, the maximum power the NNTS test is obtained when 
M0 = 4, which corresponds to the true M value.  

Table 11 contains the type I errors that were obtained after 
simulating 100 different datasets of the considered models, applying 
the NNTS homogeneity likelihood ratio test, and counting the number 
of times that the NNTS test erroneously rejected the null hypothesis 
of homogeneity for the different values of M0. For comparison, we 
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also applied Watson’s two-sample test of homogeneity and Rao’s test 
of homogeneity to the mean directions and dispersions. When testing 
a uniform population against another uniform population, the NNTS 
yielded probabilities of a type I errors that were equal to zero. In 
contrast, the Watson and Rao’s tests had higher probabilities of type I 
errors. When applying the homogeneity tests to the datasets that were 
simulated from the von Mises density, the type I errors for the NNTS 
tests were similar or smaller than the errors from the Watson and Rao’s 
tests. Lastly, when testing for homogeneity in the NNTS populations, 
the type I errors of the NNTS test and Watson and Rao’s tests are similar. 
Note that the type I errors of the NNTS test were congruent with the 
significance levels used to perform the test. 

For the grouped data, we simulated 100 datasets of sizes 20, 50, 
and 100 for two circular populations in the interval (0,1) that were 
partitioned on subintervals of equal length 1

12 . Table 12 presents 
the probabilities for each model. For Model 1, the probabilities 

were obtained using the formula for a simple sinusoidal curve [31] 
(2 1)

121 0 1sin( )

12

k

kP
π−+ .

= , and for Model 2, ( )61 0 25sin

12

k

kP
π+ .

= [32] for k = 1,…,12
were used. Based on the results in Tables 13 and 14, where n1 and n2 
are the number of observations that were simulated from models 1 and 
2, respectively, the NNTS test for homogeneity presented good power 
and type I errors that were congruent with the considered significance 
levels. As expected, the NNTS model with M0 = 1 presented the best 
power because we were simulating from simple sinusoidal models. 

Conclusions
The family of circular distributions that is based on nonnegative 

trigonometric sums (NNTS) is able to model circular populations 
that present multimodality and/or skewness. This flexibility of the 
NNTS models makes them suitable candidates for the construction 
of homogeneity tests for circular data when samples from different 
circular populations are used to test the equality of the populations’ 

NNTS test
n1 n2 α M0 = 1 2 3 4 5 6

20 20 0.01 30 21 14 10 8 3
0.05 51 42 38 23 20 15
0.1 66 53 48 46 35 26

50 0.01 56 44 33 30 20 16
0.05 76 66 57 52 46 40
0.1 87 71 69 65 59 54

100 0.01 75 62 52 50 37 30
0.05 91 81 79 74 66 58
0.1 93 88 89 83 78 72

50 20 0.01 41 24 13 10 8 3
0.05 73 48 48 41 30 18
0.1 86 68 58 52 47 36

50 0.01 86 71 58 51 50 43
0.05 92 88 82 75 69 62
0.1 96 93 88 89 80 75

100 0.01 98 93 85 84 81 76
0.05 100 98 96 97 94 89
0.1 100 100 99 98 97 95

100 20 0.01 51 28 23 15 10 8
0.05 81 59 47 39 35 28
0.1 93 77 66 58 47 39

50 0.01 97 87 81 72 66 56
0.05 99 97 94 92 86 80
0.1 100 99 99 95 94 90

100 0.01 100 100 99 97 96 92
0.05 100 100 100 99 99 98
0.1 100 100 100 100 100 99

Table 13: NNTS homogeneity test for grouped data: Statistical power.

Table 12: Probabilities of the simulated models for the grouped data.

Probabilities
Subinterval Model 1 Model 2  

(0.000,0.833) 0.08549016 0.12739726  
(0.833,0.167) 0.08922589 0.14314715  
(0.167,0.250) 0.09138272 0.16986301  
(0.250,0.333) 0.09138272 0.15337195  
(0.333,0.417) 0.08922589 0.12739726  
(0.417,0.500) 0.08549016 0.08219178  
(0.500,0.583) 0.08117651 0.04246575  
(0.583,0.667) 0.07744078 0.01137866  
(0.667,0.750) 0.07528395 0.00000000  
(0.750,0.833) 0.07528395 0.01137866  
(0.833,0.917) 0.07744078 0.04109589  
(0.917,1.000) 0.08117651 0.08493151  
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circular distributions. In this paper, a likelihood ratio homogeneity test 
for circular data was constructed by considering that the distributions 
of the different populations are or can be approximated by members of 
the NNTS family. Importantly, this test can be applied to ungrouped 
or grouped observations from these populations. The test was applied 
to simulated data, confirming the suitability of the test. Also, the test 
was applied to interesting real datasets to obtain conclusions about the 
homogeneity of the circular populations. A simulation study showed 
that the type I error and the power of the proposed test are similar 
or better than those of the Watson’s test and Rao’s test for the tested 
populations (uniform, von Mises and NNTS). 
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