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Abstract
 This work deals with an extension of the Black-Scholes model for rating options with the Heston volatility model. 

A Lie-algebraic analysis of this equation is applied to reduce its order and compute some of its solutions. As a result 
of this method, a five-parameter family of solutions is obtained. Though, these solutions do not match the terminal and 
boundary conditions, they can be used for the validation of numerical schemes. 

Keywords: Lie algebra; Black-Scholes equation; Differential
equations; Lie symmetries; Diffeomorphisms

Introduction
Black and Scholes [1] assumed a financial market, where a risk free 

bond with constant interest rate r, an asset with price S that is modelled 
by a geometric Brownian motion, and call and put options related 
to this asset can be traded. With the assumption of an arbitrage free 
market and in the framework of It o ’s stochastic differential equations, 
it is possible to derive the well-known Black-Scholes partial differential 
equation for the fair price of an option V. As the assumptions of this 
first modelling attempt are in practice too restrictive, several extensions 
of this model were proposed. One possible direction is to discard the 
assumption of a constant volatility for the geometric Brownian motion 
of the asset price and to assume that it is itself a random variable 
governed by a stochastic differential equation [2]. The resulting 
stochastic differential problem is given by  

(1)= ,t t t t tdS S dt S dWµ ν+             (1a)

( ) (2)= ,t t t td m dt L dWν α ν ν− +               (1b)

  where we suppose that (1) (2),t tW W  are two stochastically independent 
Wiener processes. The model constants α, m and L are supposed to be 
positive. The drift term of (1b) is built in a way such that the average 
of vt tends to have approximately the value m. In particular, if L is zero 
then vt is deterministic and converges exponentially to m as t tends to 
infinity. In this case, the option price behaves according to the solution 
of the usual Black-Scholes equation with a constant volatility = mσ .

Based on (1), it is possible to derive a partial differential equation 
for the price of an option V [2] as it has been done for the model with 
constant volatility in studies of Gunther and Jungel [3]. In contrast to 
the standard Black-Scholes equation the PDE that arises with Heston’s 
volatility model involves one more argument representing the current 
volatility of the market. The resulting two-dimensional Black-Scholes 
equation is as follows.

2 21 1 ( ( ) ) = 0.
2 2t xx yy x yV x yV L yV rxV m y V rVα α λ+ + + + − + −   (2)

 In application, this equation is augmented with the following 
terminal and boundary conditions 
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 In this setting, a denotes whether a call (a = 1) or a put (a = −1) 
option is considered. T represents the time when one is allowed to buy 
or sell a share of an asset for the prescribed price K, whereas λ is the 
parameter that models the price of volatility risk [2]. In (2), x represents 
the asset price S and y denotes the current volatility v. As the asset 
price and the current volatility are always positive, we are searching 
for a solution of the above differential problem (2)-(3) in the domain 

= [0, ) [0, ) [0, ]TΩ ∞ × ∞ × .

In the following, analytical and numerical solutions of (2) together 
with the boundary and terminal conditions (3) are sought. In particular, 
a quick review of Lie symmetries of partial differential equations is given 
in Section 2. In Section 3, this method is applied to the 2-dimensional 
Black-Scholes equation (2) and we derive a five-parameter family of 
analytical solutions. In Section 4, convergence properties of the Chang-
Cooper discretization are tested with the given analytical solutions. A 
section of conclusion completes the exposition of our work.

Lie Theoretical Analysis of Differential Equations
 In this section, we illustrate how Lie symmetries can be used 

to determine analytical solutions of partial differential equations. 
Applications of this method can be found in literature of Bordag [4] 
and Naicker V, Andriopoulos K, Leach [5]. Our review is based on the 
book of Stephani [6].

Many partial differential equations for a function u that is 
dependent on n variables xi ( = 1, ,i n ) can be written as follows 

( ) = 0,kH y   (4)

 with an analytic function H, where yk denotes subsequently the 
independent variables xi, the dependent variable u, and its derivatives 

, ,1
1

=
j

i i j
i i j

uu
x x
∂

∂ ∂



. Equation (4) defines a manifold in some multi-
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dimensional Euclidean space and its solutions are sub-manifold. 
Diffeomorphisms of n can be used to permute the set of solution and 
find solutions with special properties. Therefore, we observe that a one 
parameter group of diffeomorphisms { }= : |n nG f ε ε→ ∈    can be 
completely determined by the first order differential operator 

1
=1 =0

= , where = ( , , ) ,
n

i i i n
i i

dX f x x
x d

ε

ε

ξ ξ
ε

∂
∂∑                 (5)

which is called infinitesimal generator or symbol. In fact, the group 
action on a point 0

nx ∈  can be computed by solving the initial value 
problem 

0
0 0 0 0( ) = ( ( )), ( ) = .d f x f x f x x

d
ε εξ

ε                 (6)

 Moreover, the coefficients of the symbol  =1
= n

ii
i

X
y

η ∂
∂∑ , with 

respect to a change of variables y = T(x) with a transformation 
: n nT →  , can be computed as follows 

1( ) = ( )( ( )),i iy X T T yη −                  (7)

 where X(Ti) denotes the application of the first order differential 
operator X on the function Ti. It can be shown that there always exists 
a set of canonical variables in which the symbol has the normal form 


1

=X
y
∂
∂

; [7]. 

As the symbol X acts only on the independent variables, it is 
prolonged to act in a higher dimensional space including also the 
dependent variable and its derivatives up to the order of the partial 
differential equation. The prolonged infinitesimal generator is defined 
as follows 

,1 2
=1 =1 , =1 ,1 2

= ;
n n n

i i i i
i i i ii i i j

X
x u u u

ξ η η η∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂∑ ∑ ∑ 

 where the coefficients 1i is
η

  are given by 

1 1
=1 =11

= ;
s n n

i i j j i i j js s
j ji is
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Dx Dx
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− + 
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                (8)

Here, the total differentiation operator =1

n
i ijj

i i j

D u u
Dx x u u

∂ ∂ ∂
= + + +
∂ ∂ ∂∑   

is used.

A Lie symmetry of a PDE is defined as a group of transformations 
of the independent and dependent variables such that set of solutions is 
invariant under these transformations. From the fact that the image of 
a solution satisfies the PDE, i.e. ( ( )) = 0kH f yε  for all ε, it can be shown 
that 

X(H(yk)) = 0,                   (9)

holds everywhere on the solution manifold H(yk) = 0, where X is 
the prolonged symbol of the transformation group. For a given Lie 
symmetry, we seek to find its canonical variables wk as the corresponding 
symbol is 

1

=X
w
∂
∂  and (9) then reads as 

1

( ) = 0kH w
w
∂
∂

. Hence, the 
resulting PDE written in the new variable wk is independent of w1 
and therefore involves one independent parameter less. Computing 
solutions of the transformed PDE, which should be easier as less 
independent variables are involved, and reversing the transformation, 
provides solutions of the original PDE.

Lie Analysis of the Two-dimensional Black-Scholes 
Equation

In this section, the Lie method is used to find solutions to the 
2-dimensional Black-Scholes equation (2) written as H = 0, where H 
is defined as follows 

2 21 1( , , , , , , , ) := ( ( ) ) .
2 2x y t xx yy t xx yy x yH x y t V V V V V V x yV L yV rxV m y V rVα α λ+ + + + − + −

We assume that this equation admits a Lie symmetry with the 
infinitesimal generator 

= ( , , , ) ( , , , ) ( , , , ) ( , , , ) .X x y t V x y t V x y t V x y t V
x y t V

ξ γ τ ϕ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
Then, we first apply the prolonged symbol 

1 2 3 11 22=
x y t xx yy

X
x y t V V V V V V

ξ γ τ ϕ ϕ ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 to the function H and then evaluate the resulting function X(H) 
on the solution manifold H = 0. The resulting expression yields zero, 
whenever X is the generator of a Lie symmetry. The exact expressions 
for the prolonged coefficients ϕ1, ϕ2, ϕ3, ϕ11 and ϕ22 according to (8) are 
given by 

1 = ,x V x x x x y x t V x x V x y V x tV V V V V V V V V Vϕ ϕ ϕ ξ γ τ ξ γ τ+ − − − − − −

2 = ,y V y y x y y y t V y x V y y V y tV V V V V V V V V Vϕ ϕ ϕ ξ γ τ ξ γ τ+ − − − − − −

3 = ,t V t t x t y t t V t x V t x V t tV V V V VV VV VVϕ ϕ ϕ ξ γ τ ξ γ τ+ − − − − − −

11 = 2xx xV x V xx VV x x xx x xx y xx tV V V V V V Vϕ ϕ ϕ ϕ ϕ ξ γ τ+ + + − − −

2 2 2 2 2x xx x xy x xt xV x x xV x y xV x tV V V V V V V V Vξ γ τ ξ γ τ− − − − − −

2 2 2V x xx V x xx V y xx V x xy V t xx V x xtV V V V V V V V VV V Vξ ξ γ γ τ τ− − − − − −

,VV x x x VV x x y VV x x tV V V V V V V V Vξ γ τ− − −

22 = 2yy yV y V yy VV y y yy x yy y yy tV V V V V V Vϕ ϕ ϕ ϕ ϕ ξ γ τ+ + + − − −

2 2 2 2 2y yx y yy y yt yV y x yV y y yV y tV V V V V V V V Vξ γ τ ξ γ τ− − − − − −

2 2 2V x yy V y yx V y yy V y yy V t yy V y ytV V V V V V V V VV V Vξ ξ γ γ τ τ− − − − − −

,VV y y x VV y y y VV y y tV V V V V V V V Vξ γ τ− − −

where sub-indices x, y, and V of ξ, γ, τ and ϕ denote partial derivatives 
with respect to the given variables. The equation H = 0 is solved for Vt 
and inserted into X(H) = 0. Afterwards this single equation splits up 
into the determining equations, since the derivative variables (Vx, Vy, 
Vxx, …) are linearly independent. Among the resulting equations, there 
are simple ones as = = = = = = 0V V x y V VVξ γ τ τ τ ϕ . Hence, we solve the 
following remaining system of partial differential equations 

2 20 = y xL x yξ γ+                    (I)

0 = ( 2 )t yyγ τ γ+ −                  (II)

0 = ( )y xxξ γ ξ+ −                  (III)

2 21 10 = ( 2 ) ( ) ( ( ) )
2 2t xx Vx yy x t yx y L y rx m y rξ ξ ϕ ξ ξ τ α α λ ξ ξ+ − + + − + − + − (IV)

2 21 10 = ( 2 ) ( ( ) )( ) ( )
2 2t xx yy Vy x y tx y L y rx m yγ γ γ ϕ γ α α λ γ τ α λ γ+ + − + + − + − + + (V)

2 21 10 = ( ( ) ) ( )
2 2t xx yy x y V tx y L y rx m y r rVϕ ϕ ϕ ϕ α α λ ϕ ϕ ϕ τ+ + + + − + − + −  (VI)

for the functions ( , , )x y tξ , ( , , )x y tγ , ( )tτ , and 
( , , , ) = ( , , ) ( , , )x y t V x y t V x y tϕ φ β+ . Notice that equations (IV,V and VI) 

are similar to the original PDE we are trying to solve. Inserting the spe-
cial form of ϕ into (VI), it splits up into the following two equations 

2 21 10 = ( ( ) )
2 2t xx yy x y tx y L y rx m y rφ φ φ φ α α λ φ τ+ + + + − + −             (VI')

2 21 10 = ( ( ) ) ,
2 2t xx yy x yx y L y rx m y rβ β β β α α λ β β+ + + + − + −              (VI'')

 due to the fact that φ, β, and τt are independent of V. The function 
β is independent of the other functions and equations. Furthermore, 
it must be a solution of the PDE (VI'') whose Lie symmetries we are 
looking for. So the transformation V V εβ+  with its infinitesimal 
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generator =X
V

β ∂
∂

 is a Lie symmetry, mapping solutions onto 

solution. As the Lie symmetry corresponding to the coefficient function 
β is as difficult to find as solving the PDE directly, it is not significant 
for our purpose and we do not take (VI'') into account any more.

Instead, let us focus on (II). Differentiating it two times with 
respect to y yields 3 2 = 0yy yyyγ γ+ , whose solution is given by 

= ( , ) ( , ) ( , )A x t B x t y C x t yγ + + . Inserting this expression in (II) gives γ = τt 
y. Hence, γ is independent of x and since (I) holds, the function ξ is 
independent of y, i.e. = = 0y xξ γ .

The same idea works with (III), whose second derivative with 
respect to x is = 0xx xxxxξ ξ+ . The general solution to this ordinary 
differential equation (ODE) is = ( ) ( ) ( ) (log( ) 1)A t B t x C t x xξ + + − . Notice 
that (III) can only be satisfied by = ( ) (log( ) 1)tA t x xξ τ+ − . With this 
knowledge, Equations (III) and (IV) simplify to 

10 = (log( ) 1) ,
2t t tt xA y x xyτ τ φ+ + − −                  (III')

20 = ( ) .t tt yLα λ τ τ φ+ + −                  (IV')

 From (IV') one can directly derive 2

( )= ( , )t tt y D x t
L

α λ τ τφ + +
+ , as 

φy is not dependent on y. Differentiating (III') with respect to x gives 

/ ( ) = 0.tt x xxx y D xDτ − +

Notice that the functions τ and D are independent of y. Hence 
= 0ttτ  and = 0x xxD xD+  hold, i.e. ( , ) = ( ) ( ) log( )D x t B t C t x+ . (III') becomes 

1 ( ) = 0
2t tA y C tτ + − 

 
, which means that = 0tA  and 1( ) =

2 tC t τ . Using 
previous results in (VI'), we obtain 

2

2 2
2 ( ) 1 ( ) = 0.

4t t t
r mB y

L L
α α λ α λτ τ+ + + +

− −

As the coefficient of y must equal zero, τt = 0 holds and consequently 
Bt is equal to zero. Hence, the most general solution of the determining 
equations is 

1( , , , ) =x y t V c xξ

( , , , ) = 0x y t Vγ

2( , , , ) =x y t V cτ

3( , , , ) = ( , , , )x y t V c V x y t Vϕ β+

where c1, c2 and c3 are real constants and β is a solution of the Black-
Scholes equation.

Hence, the only Lie symmetries that (2) admits have the following 
infinitesimal generators 

 1 2 3= ( , , ) .X c x c c V x y t
x t V V

β∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
Apart from the last symmetry this is a three dimensional, solvable 

Lie algebra, i.e. the commutator [ , ] = ( ) ( )X Y X Y Y X−  of two arbitrary 
symmetries X and Y equals zero.

Next, we determine the canonical variables for the Lie symmetry 
with fixed constants c1, c2 and c3. Therefore, we search for three 
functionally independent invariants ( , , , )v x y t V , ( , , , )w x y t V , and 

( , , , )u x y t V  that satisfy the following equation 

1 2 3( ) = = 0.f f fX f c x c c V
x t V
∂ ∂ ∂

+ +
∂ ∂ ∂

The evaluation of (7) with the choice of the following new variables

1

2

= exp
 
− 
 

cv x t
c

, w = y, 3

2

= exp cu V t
c

 
− 
 

, and log( )  shows that the 

Lie symmetry with respect to the new variables has the desired normal 

symbol ∂
∂

 and that v, w, u, and s are the canonical variables.

In order to rewrite (2) in the new variables, we differentiate 

3

2

= exp cV t u
c

 
 
 

 with respect to x, y and t and obtain 

3 1 3 1

2 2

3 3

2 2

3 3 1

2 2 2

2= exp , = exp ,

= exp , = exp ,

= exp .

x v xx vv

y w yy ww

t v

c c c cV t u V t u
c c

c cV t u V t u
c c

c c cV t u vu
c c c

   − −
   
   
   
   
   
  

−  
  

Hence, the 2-dimensional Black-Scholes equation in the new 
variables is given by 

 2 2 31

2 2

1 1 ( ( ) ) = 0
2 2vv ww v w

ccv wu L wu r vu m w u r u
c c

α α λ
   

+ + − + − + + −   
   

and by setting 1 3 2= =c c rc  we cancel out terms with u and uv. 
Therefore, the reduced Black-Scholes equation is as follows 

2 21 1 ( ( ) ) = 0.
2 2vv ww wv wu L wu m w uα α λ+ + − +              (10)

In order to find solutions to (10), we assume ( , ) = ( ) ( )u v w v wΦ Ψ  
and obtain 

2 21 1 ( ( ) ) = 0,
2 2vv ww wv w L w m wα α λΦ Ψ + ΦΨ + − + ΦΨ

which is equivalent to 
2

22( ( ) ) = .ww w vvL w m w v
w

α α λΨ + − + Ψ Φ
−

Ψ Φ
Since the left-hand side of the equation depends only on w and the 

right hand side only on v, both sides must be equal to a constant C. 
Hence, we obtain two decoupled ordinary differential equations 

 2 = ,v C′′− Φ Φ                (11)

 2 2( ( ) ) = .L w m w Cwα α λ′′ ′Ψ + − + Ψ Ψ              (12)

 The general solution of equation (11) is given by 

1 1 4 1 1 4
2 2

1 2

1 2

1 2

1, if < ,
4
1( ) = log( ), if = ,
4

4 1 4 1 1cos log( ) sin log( ) , if > .
2 2 4

C C

a v a v C

v a v a v v C

C Ca v v a v v C

+ − − −
 +

Φ +

    − −

+           

Regarding the second ordinary differential equation (12), we 
transform it into Kummer’s equation 

( ) ( ) ( ) ( ) = 0,wf w b w f w af w′′ ′+ − −

by defining 1 2
3( ) = ( ),k k ww w e f k wΨ where 1 2

2= 1 ,mk
L
α

−

( )2 2
2 2

1= ( ) ,α λ α λ+ − + +k L C
L

2 2
3 2

2= ( ) ,α λ+ +k L C
L

2 2 2 2

( )= 1
( )

m ma
L L L C
α α α λ

α λ
+

− +
+ +

, and 
2

2= 2 mb
L
α

− . The general solution of 

Kummer’s equation is given by 

3 4( ) = ( , , ) ( , 1, ),f w a M a b w a U a b w+ − −

where M and U are Kummer’s functions of the first and second 
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kind, respectively. For further details, [8]. In case of C = 0, (12) is given 
by 

2 2( ( ) ) = 0ww wL w m wα α λΨ + − + Ψ

and we directly see that the first derivative of Ψ is a multiple of 
2 2( )

2 2
m w

L Lw e
α α λ+

−  and hence a general solution in the interval (0, ∞) is 

given by 
2 2( )

2 2
3 4 1

( ) = .
m sw

L Lw a a s e ds
α α λ+

−

Ψ + ∫
Having found solutions u for (10), we obtain solutions V of (2) by 

applying the reverse variable transformation as follows 

( , , ) = ( , ).rt rtV x y t e u e x y−                 (13)

 To summarize, we obtain the following five parameter family of 
solutions to the two-dimensional Black-Scholes equation  

( ) ( )( ) ( )

( ) ( )

( ) ( )

1 2 1 2
1 2 3 3 4 3

1 2
1 2 3 3 4 3

1 2

1( , , ) ( , 1, ) , if < ,
4
1log( ) ( , , ) ( , 1, ) , if = ,
4

4 1 4 1( , , ) = cos log sin log
2 2

k k yrt rt rt

k k yrt rt rt

rt rt rt rt

e a e x a e x y e a M a b k y a U a b k y C

a e x a e x e x y e a M a b k y a U a b k y C

C CV x y t a e x e x a e x e x

µ µ− −

−

− −

+ + − −

+ + − −

   − −
+     

   

( )

( )

1 2
3 3 4 3

2 2( )
2 2

1 2 3 4
1

1if > ,
4

( , , ) ( , 1, ) ,

, if = 0.

k k y

my s
rt L L

C

y e a M a b k y a U a b k y

a x a e a a s e ds C
α α λ+

−







 
    

× + − −


   + +    
∫

(14)

where 1,2
1 1 4=

2
Cµ ± − .

These functions do not satisfy the boundary conditions (3) given in 
Section 1. In order to check this we write down the boundary conditions 
in the new variables v, w, and u. They are given by 

( , ) = [ ( )] ,rT rTu v w e a ve K− − +−     (i)

1(0, ) = ,
2

rTau w Ke−−
                   (ii)

1( , ) = ,lim 2v
v

au v w
→∞

+
∂                   (iii)

if = 1
( , ) = if = 1.lim rT

w

v a
u v w Ke a−

→∞

+
 −



          (iv)

So if V would be a solution to the two-dimensional Black-Scholes 
equation subject to the given boundary conditions and if it corresponds 
to a solution u of the reduced equation, then u must satisfy the boundary 
conditions above. Note that, while (i) imply (ii) and (iii), (i) is not 
consistent with (iv). As (i) determines u and therefore u is independent 
of w, (iv) cannot be satisfied as ( , ) = [ ( )]lim rT rT

w
u v w e a ve K− − +

→∞
− , which 

equals neither v nor rTKe− .

Numerical Solution of the Two-dimensional Black-
Scholes Equation

This section deals with a numerical scheme to calculate an 
approximation to the solution of the Black-Scholes equation (2). We 
work with the proposal of Chang-Cooper scheme [9] and analyzed 
in studies of Mohammadi and Borz [10]. This disretization scheme is 
often used for Fokker-Planck equations, as its solutions are probability 
density functions and therefore are non-negative and their integral 
over its domain equals 1. These two properties are preserved by the 
Chang-Cooper (CC) difference scheme. In the case of the Black-
Scholes equation the solution is also non-negative, as it models the 
price of an option, which must be non-negative. Hence, the choice of 
the CC scheme guarantees that the numerical solution will be non-

negative. In order to apply the Chang-Cooper discretization scheme 
the two dimensional Black-Scholes equation (2) must be written in 
flux form. This is not possible, as the coefficient of V is −r and not 

r yα λ− − + − . However, introducing the following new variables 
= logx x , =y y , =t T t− , and ( )( , , ) = ( , , )r tV x y t e V x y tα λ+ −





   and computing 
the derivatives of V with respect to the new variables as follows 

( ) ( ) ( )

( ) ( )
2 2

( )

1= ( ) , = ,

1 1 = , = ,

= ,

r t r t r t
t x xt

r t r t
xx x xx y y

r t
yy yy

V r e V e V V e V
x

V V e V V e V
x x

V e V

α λ α λ α λ

α λ α λ

α λ

α λ + − + − + −

+ − + −

+ −

− + − +

−
+





  



 

  



we obtain the following PDE 

( )21 1 1 ( ) ( ) = 0.
2 2 2t xx yy x yV yV L yV y r V y m V Vα λ α α λ − − + − + + − + + 

 
(15)

 We can write (15) in flux form as follows 

= ( , , ) ( , , ) C ( , , ) ( , , )

( , , ) ( , , ) C ( , , ) ( , , )

x xx

y yy

V B x y t V x y t x y t V x y t
t x x

B x y t V x y t x y t V x y t
y y

∂ ∂ ∂ + ∂ ∂ ∂ 
 ∂ ∂

+ + ∂ ∂ 

                         (16)

where 

2 2

1 1( , , ) = , ( , , ) = ,
2 2

( , , ) = ( ) , ( , , ) = .
2 2

x xx

y yy

B x y t r y C x y t y

L LB x y t y m C x y t yα λ α

−

− + + −

 At this point we would like to stress three important properties of 
the flux functions. To begin with, they are all independent of the time 
variable t. Hence, the left-hand side of the resulting linear system of 
equations is the same for each time iteration and the corresponding 
matrix must be computed only once. Moreover, both B x and B y are 
linear functions and therefore Lipschitz continuous with the constants 

1=
2xγ  and =y rγ . Finally, these functions must be positive in our 

domain. This is the case when the condition 
220 < < min 2 ,

2( )
m Ly r α
α λ

 −
 + 

               (17)

 is satisfied.

The transformed Black-Scholes equation (16) must be solved 
subject to the following transformed initial and boundary conditions: 

( )

( )( )

( )( )

( )( )

( )( )

( , ,0) = [ ( )] ,
1( , , ) = ,lim 2
1( , , ) = ,lim

2
if = 1

( , , )lim
if = 1.

x r T

T t rT

x

x r T t
x

x

x r T t

T t rTy

V x y a e K e
aV x y t Ke

aV x y t e e

e a
V x y t

Ke a

α λ

α λ

α λ

α λ

α λ

+ + −

+ − −

→−∞

− + − −

→∞

+ + − −

+ − −→∞

−
−

+
∂

 += 
−

              (18)

There are several problems that arise during implementation:  

• The domain of the problem (16) subject to (18) is [0, ) [0, ]T× ∞ ×  
and therefore unbounded in the space dimensions. Moreover 
the boundary conditions are given as a limit. For numerical 
purpose the domain was limited to [ , ] [0, ] [0, ]min max maxx x y T× ×  and 
it was assumed that the function attain the limit values already 
at the finite boundaries. 

• When ,I x y±  corresponds to a point outside of the domain the 
values 1

,
m

I x yV +
±  with its coefficients are added to the right hand 

side of the linear system of equations, as they are known. 
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• The boundary condition for x → ∞ is given only in terms of the 
derivative of V with respect to x. Therefore the value 1m

I xV +
+  is 

approximated by 
1 1 1= .m m m

I x I x x I xV V h V+ + +
+ ++ ∂

• The derivative term is known and can be put to the right-hand 
side of the equation. 

The values of the function on the boundary y = 0 are not given. 
Fortunately, as y goes to zero, By goes to 2 / 2m Lα −  and yyC  tends to 
zero. Assuming 2> / 2m Lα , yδ  tends to zero, as = /y yy

yw h B C  goes to 
infinity. Hence, the coefficient of 1m

I yV +
−  is zero and this function values 

need not to be known for the calculations [9]. 

In the following, the numerical scheme is applied to the function 
type C = 0 in (14). After the variable transformation, that is used to 
write (2) in flux form, the test function becomes 

( )
2 2( )

2 2( )( ) ( )
1 2 3 4

1

( , , ) = .
my s

r T t x r T t L Lf x y t e c e c e c c s e ds
α α λ

α λ
− +

+ − − −
 
 + + 
 

∫

Note that this function has a singularity in y = 0, if and only if 

2
2 1m
L
α−

≤ − . As this infinite value might arise problems while numerical 

calculations, the set of parameters is chosen such that 22 <m Lα  
holds. In particular, the test function was calculated in the domain 
[ 0.5,0.5] [0,1]− ×  with the following parameters 

= 0.02, = 0.2, = 1, = 1, = 1, = 1, = 1, = 1.r m L a K Tα λ

Unfortunately, it is not possible to chose a set of parameters such 
that the test function has no singularity at y = 0 and additionally there 
exists a domain where all flux functions are positive. That is because 

22 <m Lα  imply 
22 < 0

2( )
m Lα
α λ

−
+

 and therefore the necessary condition for 

(17) is not fulfilled. Consequently, there is no proof in this case, that the 
numerical solution is positive. Nevertheless, the convergence order can 
be observed. Figure 1 shows the difference of the numerical solution to 
the exact test function in terms of the norm 

2

,
= .m

x y I
I m

f h h t fδ ∑

The plot data is shown in Table 1 where N, M and Q is the number 
of grid points in the x-, y- and t-dimension, respectively. A small 
time-step size is used in order to have a small error for the time 
discretization and to investigate the dependence of the error on the 
spatial-grid size.

The numerical experiments show that the discretization that is 
used provides only first-order convergence, i.e., doubling the grid point 
number in each spatial dimension and therefore halving the grid size 
h results in an error that is half as big as before. Notice that second-
order convergence is proven in literature of Mohammadi and Borz [10] 
with the assumption of zero boundary conditions. In order to validate 
this theoretical result the same procedure is done with a Gaussian bell 
function that is almost zero on the boundaries: 

( )2 2( , , ) = exp (6 ) (6 3)x y t t x yΦ − − − −

In contrast to the test function f, this function Φ does not satisfy 
the partial differential equation (16). Hence the deviation to the PDE 

 ( )21 1 1( ) := ( ) ( )
2 2 2t xx yy x yH y L y y r y mα λ α α λ Φ Φ − Φ − Φ + − Φ + + − Φ + + Φ 

 

is added to the right hand side of the linear system of equations 
according to 

( ) 1 2
1 /2 1 /2

=1

23 = 4 ( ) .
n

m i i m m m
I I I I I Ii i

i

t F F H
h
δ − −

+ −Φ − − Φ −Φ + Φ∑
Numerical experiments are performed with the grid sizes according 

to Table 2.

Φ was approximated in the domain [ 0.5,0.5] [0,1]− ×  with the 
parameters being 

= 1, = 3, = 2.5, = 1, = 1, = 1, = 1, = 1.r m L a K Tα λ

Here, the flux functions are positive, as 
222 = = 2

2( )
m Lr α
α λ

−
+

 With the 

logarithmic plot of the error in Figure 2 we can see that second-order 
convergence is obtained.

In the following, we use the Chang-Cooper numerical scheme to 
calculate a numerical solution. Here, this numerical solution in the 
case of a call option is compared to the solution of the Black-Scholes 
equation, where the volatility is assumed to be constant. It is given by 

( )( )
1 2( , ) = ( ) ( )r T tV S t a S ad Ke ad− −Φ − Φ                (19)

2

1,2
ln( / ) ( / 2)( )= ,S K r T td

T t
σ

σ
+ ± −

−

where Φ is the cumulative distribution function of a normally 
distributed random variable with mean 0 and variance 1. This function 
is given by 

2/21( ) = .
2

x sx e ds
π

−

−∞
Φ ∫
The spatial domain of discretization is [ 4,0.5] [0,2]− × . After 

reversing the variable transformation the option price can be evaluated 
for [0.0183,1.6487]x∈  and [0, 2]y∈ . The following parameters are used 

= 0.06, = 0.5, = 2, = 1, = 1, = 1, = 1, = 1.r m L a K Tα λ

The model constant m represents the square of the average volatility 
and the stochastic process tends to this value. Hence, if one starts the 
process with the value y = 0.5, the stochastic process for the volatility 

tν  is likely to be almost constant to 0.5. As you can see in the 
lower left plot of Figure 3, the calculated price is nearly the same with 
both models. In contrast, regarding the case of a currently volatility 
lower than 0.5  the price of the option calculated with the extended 
Black-Scholes equation is higher than that of the model with constant 
volatility, because it takes into account that the volatility will rise. This 

Figure 1: Logarithmic plot of the norm of the error || f -fex ||.
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effect can be seen in upper left and right plots. Finally, in the lower 
right plot the simpler model overestimates the price, when the initial 
volatility is higher than 0.5 , due to the fact that it is likely to fall. 

In addition, the numerical solution satisfies the so-called Put-
Call-Parity. The price of a call option C and the price of a put option P 
subject to the same asset with price x, that have the strike price K and 
the expiry date T in common, are related by the following formula [3] 

( )= .r T tx P C Ke− −+ −

We compute also the price for the put option and observe the absolute 
deviation for the Put-Call-Parity formula that we average along the 
y-dimension. Figure 4 shows the result depending on x and t. Apart from 
small x values the error is in the range of the numerical error of the Chang-
Cooper-Scheme. The drastic increase of the error for x → 0 is due to the fact, 
that the boundary condition for =x −∞

 for the Black-Scholes equation in 
flux form is applied at the finite value = 4x − . This corresponds to 4=x e−  
as the transformation was = log( )x x . Consequently, the numerical 
solution for the put option takes the value ( )r T tKe− −  at 4=x e− , whereas 
the correct value is ( ) 4r T tKe e− − −− , as C tends to zero as x goes to zero and 
therefore the price for the put option is ( )= r T tP Ke x− − − . To conclude, it is 
evident why there is such a great error for small x, and moreover it is not 
relevant as x gets never so small in applications.

Conclusion
The aim of this work was to solve the partial differential Black-

Scholes equation with Heston volatility model. Therefore, an analytical 
technique due to Sophus Lie that can be use to reduce the number of 
independent variables of a partial differential equation was presented 
and applied to the Black-Scholes equation. A five-parameter family 
of solutions was found. These functions do not satisfy the boundary 
conditions of the option price problem and henceforth numerical 
schemes are necessary to obtain approximate solutions. In the last 
part of this work the Chang-Cooper discretization scheme was used 
to calculate the option price function numerically. Its convergence 
was tested with an exact solution of the PDE, which was found by the 
Lie theoretical analysis. Finally, the numerical scheme was applied 
to compute the price of an option and good result were obtained in 
accordance with economic reasoning.

N 26 51 76 101

M 26 51 76 101

Q 500 500 500 500

hx = hy 1/25 1/50 1/75 1/100

|| f− fex || 0.243 0.122 0.083 0.065

Table  1: Numerical error for different grid sizes.

N 26 51 76 101

M 26 51 76 101

Q 500 500 500 500

hx = hy 1/25 1/50 1/75 1/100

|| Φ − Φex|| 3.25*103 0.83*10−3 0.37*10−3 0.21*10−3

Table 2: Numerical error for different grid sizes.

Figure 2: Logarithmic plot of the norm of the error || Φ−Φex|| against the 
spatial mesh size h.

Figure 3: Comparison between the solutions of the Black-Scholes 
equation with fixed (green) and variable (cyan) volatility.

Figure 4: Arithmetic mean over the y-dimension of the absolute deviation 
from the Put-Call-Parity equation.
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