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A Lattice Model of COVID-19 Epidemic

Abstract
Susceptible, infective, recovered, and hospitalized/isolated individuals are placed on the cells of a n × n square lattice, where in each cell is occupied by a single 
individual, or is vacant. At discrete time units (typically one day each) all susceptibles and infectives execute a random movement and when a coincidence of 
the two types occurs at some cell the susceptible is converted to infective status according to some probability in the range 0.03-0.05. Infectives are labeled by 
the number of days since originally infected. At each time increment the age label of the infectives is increased by one unit. When the label reaches a specified 
number like 15 or 20 days the infectives recover according to a specified probability, e.g. 0.8, or become isolated/hospitalized. Upon reaching some specified age 
the latter types either recover or die. Probabilities for the movements and conversions from one status to another are implemented by random number generation. 
Simulations were carried out to investigate the effect of several probability and age parameters, the size of population (proportional to n × n) and density (related 
to fraction of occupied cells), and the size of the movements. Mid-term gradual conversion of susceptibles to isolated was explored as an intervention policy. Most 
simulations were carried out for a 50 × 50 or 100 × 100 lattice.
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Introduction

Epidemic disease models have been developed by epidemiologists, 
statisticians, physicists and others. The models developed over the years 
can be classified in several broad classes: (i) branching process models, (ii) 
differential equation models, (iii) network models. (iv) statistical models that 
describe disease progress by some analytical function containing parameters 
to be determined from data by statistical estimation. Models (iv) are purely 
empirical and do not provide a basis for planning mid-term intervention. 
Type (i) models utilize branching process theory and have been applied by 
epidemiologists to actual data from measles and other epidemics [1-3]. They 
are relatively simple and can draw on exact results from probability theory. 
Differential equation models (ii) are very popular because systems of ordinary 
differential equations can be readily formulated and can be readily solved 
numerically, or even analytically, in highly simplified form. Examples include 
the early paper of Kermack and Kendric, and the recent paper of Poletti that 
includes a behavioral element in the equations [4,5]. The type (ii) models 
imply complete mixing or homogenization of all individuals and have also been 
labelled mass action models. The basic theory for these models is treated in 
Bailey’s well known book [6]. Network models (iii) have been developed using 
methodology of Statistical Physics. They employ nodes of susceptible, infective 
and other individuals interconnected in a network or graph. Using sophisticated 
statistical averaging network models lead in some limiting cases to analytical 
results [7,8]. A recent paper by Volz combines elements from network and 
differential equation models [9].

In this paper we present a model in which individuals are located on a 
lattice, where each individual occupies a lattice cell and is labeled by the cell 
coordinates. Individuals are allowed to interact with neighboring or further-
located individuals on a probabilistic basis. There is no homogenization. The 
model is flexible but does not lend itself to analytical results. It entails purely 
computer simulation. The lattice model is defined in section 1. Section 2 
discusses the significance of model parameters and presents sample results of 

simulations. Section 3 summarizes conclusions. The computer code was written 
in Python.

Literature Review 

Model description

The lattice: A n × n square lattice is defined where each cell contains one 
individual of a particular type, or is vacant. Each individual is labelled by its cell 
coordinates (i,j) and by an index defining its type (susceptible, infective e.t.c.). 
Of the n2 cells the 4n-4 cells belonging to the lattice edges are not occupied in 
order to simplify the code. Hence, the total number of individuals on a n × n 
lattice is n2-4n+4.

The individual types: The following types of individuals are recognized.

Type 1: healthy and mobile, susceptible to infection, briefly labelled 
“susceptibles”. 

Type 2: healthy and immobile, not susceptible to infection.

Type 3: dead.

Type 4: recovered from disease and assumed immune to further infection.

Type 5+q: mobile infected. These individuals can infect type 1 individuals 
and are referred to as “infectives”. There are k1 types of infectives, labelled 5+q, 
where q=0,…,k1-1. These types are assumed asymptomatic or mildly sick. A 
freshly infected individual carries index 5. The increment q is the number of days 
since infection. When infected a type 1 individual is converted to type 5. Upon 
reaching age q=k1 an infective is converted to recovered, type 4, with probability 
p4, otherwise progresses to type 5+q, q=k1,…,k1+k2. 

Type 5+q, q=k1,…,k1+k2: These individuals are assumed hospitalized and 
isolated. They are assumed not to be infective. Upon reaching age k1+k2 an 
individual of this type either recovers to type 4 with probability p5, or dies with 
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is longer, 150-300 days versus 30-150 for the first three sets. Samples out of the 
two sets starting with 10 infectives. A useful measure for comparison with public 
health data is the ratio of recovered to dead at the end of the infection. This ratio 
varies between 14 and 40 throughout Table 2 (Tables 1 and 2).

Table 1. Parameters for the simulations. Initially all n2-4n+4 cells occupied by 
susceptibles, except a small number occupied by infectives as indicated.

Lattice: 50 × 50 Parameters
Type 1 All n2-4n+4 cells occupied by 

susceptibles
Type 2 Except for a certain number occupied 

by infectives 
Note: The other parameters are: p1=0, p3=0.04, p4=0.8, p7=0.7, k1=15, k2=15
Table 2. Mean (m) and standard deviation (sdv) of dead and recovered in three 16-
run sets with p3=0.04 and a single initial infective at (25,25), and two 16-run sets with 
p3=0.04 and 10 initial infectives. The other parameters from Table 1.

# of initial type5 one initial infective 10 initial infectives

Sets set 1 set 2 set 3 set 1 set 2

mdead 3.2 6 7.8 11.5 10.8

sdvdead 6.7 9.8 11 8 9.1

mrecov 127 95 138 157 165

sdvrecov 119 154 198 83 92

mrecov/mdead 40 16 18 14 15

Lattice size

To examine the effect of lattice size, i.e., population, two sets of 16 runs 
were conducted using parameters from Table 1 but for an 100 × 100 lattice 
(9,604 cells) and for 10 or 40 initial infectives. As before the runs in each set 
differ only by the random sequence used. The results are presented in Table 
3 which also includes a set from the 50 × 50 lattice for comparison. The first 
two columns show similar high variability in both dead and recovered. In the 
last column obtained using 40 initial infectives variability has sharply diminished 
while the mean of dead has increased roughly by a factor of 4. The ratio of 
recovered to dead is 15-17 throughout the three sets (Table 3).

Table 3. Mean (m) and standard deviation (sdv) of dead and recovered in three 16-run 
sets with p3=0.04. The first set for the 50 × 50 lattice and 10 incentives, the other two for 
10 or 40 initial infectives. The other parameters from Table 1.

50 × 50 lattice
10 infectives

100 × 100 lattice
10 infectives

100 × 100 lattice
40 infectives

mdead 11 13 42

sdvdead 9 15 22

mrecov 165 225 645

sdvrecov 92 263 283

Density

In the runs so far all cells were initially occupied by type1 or type5. To 
explore the effect of lower number of occupied cells, i.e., lower population 
density, runs were carried out using the parameters of Table 1 with a fraction f of 
unoccupied cells randomly distributed throughout the lattice. Some results are 
shown in Table 4 for f=0, 0.2, 0.4. The number of dead and recovered decrease 
roughly by a factor of 3 from f=0 to f=0.2, and by another factor of 3 from f=0.2 to 
f=0.4. At f=0.4 the number of dead shows increased uncertainty. The numbers 
of recovered show larger regularity for all three values of f (Table 4).

probability 1-p5.

The initial conditions: Initially the lattice is populated with individuals of 
type 1, a small number of type 5, or are left vacant. The vacant cells remain 
unoccupied throughout the simulation.

Mobility and infection: Disease progression proceeds in discrete time 
increments of one or more days each. At each discrete time all n2-4n+4 cells 
are quarried one by one. Each type 1 encountered (susceptible) is allowed with 
probability p1 to convert to type 2. If not converted to type 2 it is allowed to move 
in one of the following four directions: increasing j, decreasing j, increasing I, 
decreasing I, all with equal probability determined by a random integer generator. 
Once a direction is selected, the feasible length h of the movement (in cell units) 
is selected by a random integer generator within the range allowed by the lattice 
boundary. Then a function f(h) is defined that renders longer lengths less likely:

( ) ( ) ( ){ }1 3
( ) integer h 1 expf h h n= + −  

where “int” denotes the integer value of the number. A movement of length 
f(h) (in cell units) is then implemented. If the individual at the cell reached is 
infective (5+q, q=0,…k1-1), the cell at (i,j) is converted to type 5. If the cell 
reached by the movement is of any other type, the individual at (i,j) does not 
change. Whether infected or not, the type 1 individual after the move is returned 
to its original cell (i,j). It is noted that the step size f(h) defined above increases 
with the lattice size n, but less than proportionately.

Each infective individual (type 5+q, q=0,…,k1-1) that is reached in the scan 
is allowed to move by exactly the same rules as for type 1 above. If the move 
leads to a type 1 individual, the latter is converted to type 5 with probability p3. 
The infective individual is returned to its initial position (I,j). At each time step 
the infective individual’s index is increased from 5+q to 5+q+1. Upon reaching 
5+k1, the infective is either converted to type 4 (recovered) with probability p4 
or becomes hospitalized or isolated (type 5+q, q=k1,…,k1+k2-1). For the latter 
type of individuals, q is increased by unity at each time increment. Upon reaching 
5+k1+k2 the individuals of this last type either recover with probability p5 or die 
with probability 1-p5. As a result of these rules after k1 days the infectives are 
either recovered or hospitalized. The hospitalized individuals are assumed not 
to be infective due to strict hospital precautions. 

Significance of parameters and sample results

Initial number of type5 (Infectives): The following runs employ the 
parameters in Table 1 except as indicated.

Each run constitutes a discrete stochastic process controlled by 
probabilities p1,p3,p4,p5 set at the beginning of the run. The probabilities are 
implemented by random numbers from a uniform distribution in (0,1). The 
sequence of random numbers during execution is generated by a Random 
Number Generator (RNG) using some specified “seed”. Each time the same 
seed is used the same random number sequence is generated. The seed for 
each run is specified by the user or is generated by the RNG.

Three sets of 16 run each were carried out using different seeds for each 
run. The parameters of Table 1 were used with p3=0.04 and a single initial 
infective (type5) at grid position (25,25). The results are summarized in Table 
2 which lists for each set the mean and standard deviation (sdv) of dead and 
recovered at the end of the infection. The end is defined by the disappearance 
of the last type5 (infective). In the 48 runs the number of dead varied from 0 to 
33 and the recovered from 47 to 491. Most of the runs had zero dead while a 
few had a relatively large number. The time evolution of the infection for two 
runs, one with zeros dead the other with a relatively large number of dead. The 
number of recovered also exhibits large variability. These results imply that the 
course of infection caused by a single infective in a population of approximately 
2500 will be unpredictable.

Two sets of runs were next carried out using the parameters of Table 1 with 
p3=0.04, but with 10 initial infectives randomly distributed over the lattice. The 
rest of the cells were all initially occupied by type1. The means and sdv’s of these 
runs are also included in Table 2. The sdv’s are still large but the relative sdv’s 
are considerably lower than in the single infective sets. The duration of infection 
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Table 4. Summary results at the end of infection at unoccupied fractions f=0, 0.2 and 
0.4. Initial infectives 10 throughout.

 Table 1 
parameters, f=0

 Table 1 
parameters, f=0.2

Table 1 
parameters, f=0.4

mdead 11 3.8 1.4

sdvdead 9 2.4 1.5

mrecov 165 60 23

sdvrecov 92 38 10

Parameters p3, p4, p5, k1, k2

The parameters p3 and k1 have the largest effect on the duration infection 
and the total number of dead and recovered. In all simulations up to this point 
p3 was set at 0.04. Runs were next performed using p3=0.03 and p3=0.05, 
with the other parameters from Table 1. The results are summarized in Table 
5. Each of the three columns summarizes 16 runs differing only by the random 
sequence employed. At p3=0.03, k1=15 the numbers of dead and recovered 
are low and show large uncertainty. At p3=0.04, k1=15, a case already included 
in Table 2, the numbers of dead and recovered increase sharply but the large 
uncertainty remains. At p3=0.05 the number of dead and recovered increases 
further sharply and the uncertainty decreases sharply. Comparison of the 
results in the third and 5th column with the standard case in column 2 shows 
that increasing p3 or k1 results in similar large increase in the number of dead 
and recovered. The duration of infection increases from left to right but is less 
variable than the number of dead. The other two parameters p4 and k2 can in 
principle be estimated from clinical observations. We have used p4=0.8 as the 
probability that an infected individual recovers and does not get admitted to the 
hospital. Increasing p8 would reduce the number of infectives and increase the 
number of recovered reducing the duration of infection and the number of dead. 
The last parameter k2 has no effect on the number of cases (infections) and 
only influences the relative number of dead and recovered. It can be directly 
obtained from hospital data (Table 5).

Table 5. Mean and standard deviation of dead, recovered, and duration with 16 runs 
in each set defined by the parameters p3 and k1. 10 initial infectives; other parameters 
from Table 1.

 p3=0.03, 
k1=15

p3=0.04,
k1=15

p3=0.05,
k1=15

p3=0.03, 
k1=20

p3=0.04, 
k1=20

mdead 2.9 11 55 15 68

sdvdead 2.3 9 7.5 11 10

mrecov 44 165 893 207 1097

sdvrecov 18 92 82 140 98

duration, 
days

m=125,
sdv=25

m=194,
sdv=82

m=278,
sdv=69

m=288, 
sdv=151

m=329, 
sdv=64

Length of movement

The interaction distance between susceptibles and infectives at each 
time step was so far determined according to the “standard rule”, defined in 
the section “Model Description”. A simpler alternative is to employ a step of 
fixed length subject to the geometric constraints of the lattice boundary. For 
this purpose a distance z is chosen randomly among the available distances 
to the boundary. The step length is then defined as the minimum between z 
and some preassigned number nmax. Table 6 summarizes results for the 50 × 
50 lattice for 3 values of n max. As in the previous tables each set involves 16 
runs differing only by the random sequence used. The table also includes a set 
labelled “standard rule” from previous tables. The numbers of dead, recovered, 
and the duration increase with increasing nmax since more susceptibles 
become accessible as infection progresses. The results using the “standard 
rule” are relatively close to nmax=20 (Table 6).

Table 6. Numbers of dead, recovered, and duration for different step lengths. 50 × 50 
grid, p3=0.04, 10 initial infectives, the other parameters from Table 1.

 standard rule nmax=10 nmax=20 nmax=30

mdead 11 6.5 11 14

sdvdead 9 6.2 6.6 10

mrecov 165 96 169 237

sdvrecov 92 51 86 148

duration, days m=194, 
sdv=82

m=123, 
sdv=63

m=172,
 sdv=75

m=201, 
sdv=111

Intervention 

The probability p1 of conversion of Type1 (susceptible) to type 2 (isolated) 
at each time step was kept zero in all runs up to this point. Positive values 
of p1 would clearly slow the infection. A simple way of using p1 as a tool for 
intervention is to start with p1=0, and switch to some p1>0 when the number of 
cases per day exceeds a predetermined value b. The results of this very simple 
feedback mechanism are given in Table 7 for p3=0.05, 10 initial infective, with 
the other parameters from Table 1. The first 16-run set is for p1=0 (earlier result 
from Table 5), the other columns for different sets of p1 and b.

With the low probability p1=0.005 but low b=5, already the number of dead 
and recovered is sharply reduced from the base case p1=0. With the probability 
p1 increased to 0.01 the number of dead and recovered is further decreased 
to p1 approximately 25% of the base case. At p1=0.01 but at higher trigger 
b=10 the number of dead and recovered approximately doubles from the lows. 
The higher trigger delays the intervention. Of the two parameters p1 and b, the 
second appears more practical to implement (Table 7).

Table 7. Dead, recovered, and duration for different parameters p1 and b. 50 × 50 
lattice, p3=0.05, the other 10 initial infectives from Table 1.

 p1=0 p1=0.005,
b=5

p1=0.01,
b=5

p1=0.01,
b=10

mdead 61 25 15 30

sdvdead 6.4 7.8 5.7 9.5

mrecov 1019 416 217 483

sdvrecov 68 105 90 81

duration m=204, 
sdv=25

m=278, 
sdv=69

m=116,
 sdv=16

m=150,
 sdv=19

Discussion 

A major feature of the model is the introduction of age q as an index of 
infectives (number of days since infection). This feature permits controlled 
recovery of infectives which is the main mechanism of epidemic termination.

The model contains parameters p1, p4, p5, k1, k2 that have an obvious 
interpretation and can be roughly estimated from published reports. It is 
assumed throughout that the infectives either recover or become hospitalized or 
isolated becoming non-infective. Among the various probabilities, p3 cannot be 
directly obtained from measurements but must be estimated by matching model 
predictions to reported number of cases, dead, and recovered. This matching 
would have to consider that the parameters p3 and k1 are strongly correlated.

A major conclusion of the simulations is the high degree of uncertainty in 
the results of each run, as they depend on the particular sequence of random 
numbers used. To compare the effect of different sets of parameters, mean 
and standard deviation (sdv) were obtained for 16 runs for each set. In some 
cases, especially for low values of p3, the standard deviation is on the same 
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order of magnitude as the mean. Using a larger lattice, i.e., a larger population 
would reduce the uncertainty but the required increase the computational effort 
is beyond the scope of the study. Hence, simulations were carried out for only 
50 × 50 and 100 × 100 lattices.

Conclusion

The model explores the effect of population density and distance travelled 
by susceptible and infective individuals. It also evaluates the effectiveness of 
isolating a fraction of susceptibles during the pandemic when the number of 
daily cases exceeds a specified number.

A major weakness of the model is treating the population as discrete 
individuals. Families or clusters of individuals in close contact are not considered 
although current reports suggest that a single infective can cause infection 
to several individuals in close proximity. The model also treats an isolated 
population with interaction between neighboring populations neglected. At this 
time data from isolated communities of the right size were not available to test 
the model. It is only noted that the ratio of recovered to dead, 15-40 in Tables 2 
and 3 is in the range reported for a number of US states or counties.
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