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Abstract
Emission factors are very important measures for developing an emission inventory, making decisions, designing 

control strategies, mitigating climate change, and even improving public health, in terms of respiratory system diseases. 
The emission factors could be either measured from field tests or estimated by an emission model. Existing models 
seldom consider the impacts of some special factors such as pavement roughness. As the impacts of the pavement 
roughness on emissions are very complicated, a linear model or physical model may not depict the mappings from 
affecting factors to resulted emission factors. In this paper, two non-linear models, including K-Nearest Neighbor (K-
NN) and Neural Network (NN) were built to estimate vehicle emission factors using roughness involved input data. A 
best fitted model was identified to illustrate the emission pattern along a wide range of pavement roughness. Multiple 
field tests were conducted in five regions of the State of Texas, United States, with a total of 1,609 km test length. 
One dedicated test vehicle was employed throughout the test. Pavement roughness was tested using a smartphone 
based application. All tested data were separated into four groups, each representing a different range of roughness, 
while the modeling was conducted within each group. The predictive performance of each model was evaluated by (1) 
correlation coefficient; (2) relative errors; and (3) two tailed unequal variance t-test. Results suggest that, K-NN can be 
better than NN to model the emission factors for the Texas highway system, and driving on a smoother and rougher 
pavement result in higher vehicle emissions.

*Corresponding author: Fengxiang Qiao, Ph.D, Professor, Innovative
Transportation Research Institute Texas Southern University, 3100 Cleburne
Street, Houston, Texas, 77004, USA, Tel: 713-313-1915, Fax: 713-313-1856,
E-mail: qiao_fg@tsu.edu

Received December 22, 2017; Accepted February 20, 2017; Published February 
24, 2017

Citation: Li Q, Qiao F, Yu L (2017) Non- Linear Models of Light-Duty Vehicle 
Emission Factors Considering Pavement Roughness. J Civil Environ Eng 7: 268. 
doi: 10.4172/2165-784X.1000268

Copyright: © 2017 Li Q, et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Modeling; Emission factors; Pavement roughness;
K-Nearest neighbor; Neural network

Introduction
The U.S. Environmental Protection Agency (EPA) recommends 

building the emission inventory as parts of a State Implementation 
Plan (SIP) [1]. Emissions factors are important measures in the 
development of national, regional, state, and local emissions inventories 
for decision-making and control strategies. Users of emission factors 
include agencies in federal, state, and tribal levels, as well as consultants 
and industries [2,3]. Proper estimation of emission factors (EF) could 
also help in developing countermeasures in not only the environmental 
protections and congestion mitigation [4], but also the public health 
improvements [5,6]. The emission factors are also used to report 
to national  greenhouse gas inventories  under the  United Nations 
Framework Convention on Climate Change (UNFCCC) [7].

EF could be measured directly from on-road measurement 
equipment and in-lab testing devices [8-13] or estimated using a 
suitable model such as the EPA models MOBILE 6.2 [14] and MOVES 
[3]. Field and in-lab tests are limited to the availabilities of equipment 
and testing environment/scenarios, while the model estimation may 
not consider all real conditions and might induce more or less errors 
[15]. Many studies found that vehicle emissions are very subject to 
many factors, such as driving behaviors [16], vehicle information [17], 
pavement materials [18], route’s slope conditions [19], traffic control 
system [20], and traffic situations, such as the situation at a work zone 
and a signalized intersection [21-23]. However, most of the emission 
models seldom incorporate the impacts of pavement roughness [24-
26] into the independent variables. It is hypothesized that the vehicle
emissions are nonlinearly correlated to pavement roughness.

The objective of this paper is to identify a best fitted nonlinear 
model to illustrate the impacts of pavement roughness on vehicle 
emission pattern, based on real world measurements by a test vehicle 
in five regions of the State of Texas. 

Methodology and Field Test 
The non-linear problem to estimate emission factors

Many factors could affect emission factors, including (1) engine 
information (in-take air temperature IAT, manifold absolute pressure 
MAP, revolutions per minute rpm), (2) vehicle activity (velocity 
and acceleration), and (3) pavement information (e.g. the calculated 
International Roughness Index (IRI)). A nonlinear mapping could 
be envisioned converting these independent variables to the needed 
emission factors. Figure 1 illustrates such nonlinear mapping.

Among all input variables, the pavement roughness is the one that 
is not typically associated with emission estimations. However, studies 
have demonstrated that pavement roughness would possibly affect fuel 
consumption, which is a typical indicator of vehicle emissions [24,27]. 
A recent study identified that the pavement roughness can be classified 
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Figure 1: Non-linear mapping for the estimation of emission factors.
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where:

d2
st = Euclidean distance squared between vector xs and yt.

xs = mx, the mxth row vectors in an mx-by-n data matrix X, e.g. x1,x2, 
…, xmx or xs.

yt = my, the myth row vectors in an mx-by-n data matrix Y, e.g. y1,y2, 
…, ymx or yt.

Meanwhile, the number of nearest neighbors called k is essential 
for deliver a precise estimated result. A smaller k may result in higher 
variance, whereas larger k may lead to higher bias. The selection of k 
quite depends on the nature data. Therefore, cross-validation is often 
adopted to seek for a proper nearest neighbor size with the lowest Error 
Log (el) described by equation (3).

( )( )2
log10= −∑ k

j jj
el yj y                           (3)

where:                                                         

k = The best number of neighbors,

yj= The measured output at the jth nearest neighbor, and

ˆ jy = The estimated output at the jth nearest neighbor.

The estimated output ( ˆ jy ) is an average of k weighted nearest 
neighbors, described by equation (4). 

; ;11==∑
k

j i ji
j

w y
y

k
                       (4)

where: 

jy = The estimated output at the jth nearest neighbor,

wj,i = The weight of the ith input nearest neighbor at the   jth measured 
output neighbor,

yj,i= The measured output of the ith input neighbor at the jth 
measured output neighbor,

k=The best number of neighbors.

As the K-NN model excuses based on its training dataset, any 
noise or irrelevant features become sensitive for the model results. 
Meanwhile, more frequent classes may dominate the modeled result.  

The neural network model

A neural network (NN) is flexible for linear and nonlinear. For 
nonlinear relationship between dependent and independent variables, 
the neural network could provide precise estimated results. Commonly 
two models were executed within the network, including Multiplayer 
perception (MLP) and Radial Basis Function (RBF), while the RBF 
provides a linear combination of radial basis functions of the inputs 
and neuron parameters, MLP used a supervised learning technique 
called backpropagation for training, which allows predicting more 
complex relationships. MLP was chosen in this study. MLP maps sets 
of input data onto a set of appropriate output, which is consisted of 
multiple layers of nodes. Each layer is fully connected to the next one. 
A typical neural network structure is presented in Figure 2. [29]

In Figure 2, there are p dependent variables, which are input to one 
or more hidden layers with q neurons. In each neuron, there is a linear 
activation function, which maps the weighted input variables to the out 
of each neuron. The main activation function is a hyperbolic tangent 
function in equation (5), which can be replaced by a sigmoid function 
in equation (6) 

into four groups, each group presents a specific feature in vehicle emission 
factors [27]. The specification of the calcination is illustrated in Table 1.

Table 1 shows higher vehicle emission factors were observed on 
the smoother and rougher pavement denoted by category A and D. 
This implies that pavement roughness is also one of determinants in 
air emissions. The roughness involvement may improve the accuracy 
of the vehicle estimation. 

The nonlinear mapping in Figure 1 should be implemented through 
a nonlinear model, the output of which could be emission factors of 
major air emissions, such as: carbon dioxide (CO2) in g/mi, carbon 
monoxide (CO) in mg/mi, hydrocarbon (HC) in mg/mi, and nitrogen 
oxides (NOx) in mg/mi. In order to have a uniform comparison of 
multiple air emissions (m), this study adopted the normalized emission 
index proposed by Li et al. The Normalized Emission Factor (N) is 
calculated by using equation (1).

; ;
; 1

; j ;
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∑                                    (1)

where:

N(i,j)= The ith normalized emission factor in the jth air emission,

Xi,j= The ith emission factor of the jth air emission (g/mi or mg/mi),

m = The number of studied air emissions, here is 4 for CO2, CO, 
HC, and NOx,

 M in(xi,j)= The minimum emission factor of the jth air emission (g/
mi or mg/mi), and 

M axj (xi,j)= The maximum emission factor of the jth air emission (g/
mi or mg/mi).

Any nonlinear models could be candidates for the required 
nonlinear mapping. In this paper, two typical nonlinear models were 
employed to estimate emission factors based on the data collected from 
field: (1) the K-nearest neighbors (K-NN) model, and (2) the Neural 
Network (NN) model. Both are machine learning based multidimensional 
in their respective featured spaces. The two models are also memory-based. 
They start with training observations, and assume that the response class of 
nearly observations is likely to be similar.

The K-NN model

The K-nearest neighbors (K-NN) algorithm is based on an 
assumption that class probabilities are locally approximately constant. 
However, for most neighborhoods, it is not constant. To bring out a 
feasible constant class probability, distance metric needs to be improved. 
There are many types of distance metrics, such as Mahalanobis distance, 
city block metric, Minkowski metric, cosine distance, and so on [28]. 
Euclidean distance is a commonly used, expressed by equation (2).

d2
st = (xs-yt) (xs-yt)´                                                                                       (2)

Category
IRI Average Normalized Emission Factor 

(ANEF)

Range Cluster 
Center Avg. Std Evaluation

A (0.00-1.99) 1.36 0.051 0.055 High

B (1.99-3.21) 2.54 0.032 0.017 Low

C (3.21-6.00) 4.07 0.030 0.016 Low

D > 6.00 7.07 0.039 0.014 High

Table 1: Classification of pavement roughness based on Texas emission 
measurement (source: Li et al., 2016d).
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a wide range of speed limit roadway facilities with a wide range of 
pavement roughness.

A Portable Emission Measurement System (PEMS) was equipped 
inside a dedicated test vehicle to provides second-by-second emission 
rate. The test vehicle is 10 years old with 10,000 starting mileages. A 
Global Positioning System (GPS) was paced on the top of the test 
vehicle to collected real-time test vehicle’ geo-location information, 
including latitude, longitude, and altitude. Meanwhile, the engine’ 
dynamic operation information, such as IAT, MAP, speed, acceleration 
and rpm were also recorded through a set of sensor arrays that were 
also connected to and synchronized with the PEMS. 

Meanwhile, a smart phone installed with roughness measurement 
application (app) was mounted to the front of the windshield inside 
the vehicle by a phone car rack. Before each test, a simple calibration 
procedure was conducted. Concretely, the phone position was adjusted 
as straight (vertically or horizontally) as possible in order to set the 
phone’s three dimensions (x, y and z) as close to zero as possible, which 
serves as a reference point for the roughness model in the app. The 
correlation of the calculated IRI towards laser beam measured IRI is 
80% above [31]. The app provides real-time calculated International 
Roughness Index (IRI) for every 20-meter distance.

A total of 1,609 km (1,000 miles) highway routes were tested 
and about 210, 800 emission rates for CO2, CO, HC, and NOx, were 
recorded. To synchronize the IRI data, the collected emission rate 
data were calculated and interpolated into emission factors for every 
20-meter distance. It turns out that 19,099 valid data pairs (20 meters 
each) were prepared. Seventy percent of the data pairs were used to 
train the models, while the rest were evenly separated for testing and 
validation.

Results and Discussion
Models structure identification

A total of 19,019 data pairs were prepared. Based on the four 
categories of pavement roughness in Table 1, the data pairs were 
divided into four datasets. Most of test pavement roughness fell into 
category A, 14,078.  3,585 data pairs were classified into category B. 
Only few data pairs met the category C and D with 1,304 and 52, 
respectively. These datasets were further randomly divided into three 
groups for training (70%), testing (15%), and validation (15%) in the 
modeling process. 

K-NN model: Cross-validation was conducted to identify the 
number of k, the optimal number of nearest neighbors. Table 2 presents 
a list of k with the highest correlation coefficient R values in a validation 
stage for the four categories, which ranges from 3 to 5. 

In the most cases, 4 nearest neighbors were chosen. Meanwhile, 
with the k values in Table 2, the validated emission factors were highly 
correlated to the observed values. Besides, a two tailed t-test was used 
to examine the variance of the observed and modeled emission factors. 
The null hypothesis is that two samples are equal variance. When p is 
greater than 0.05, the null hypothesis is accepted. All p-values in Table 
2 are greater than 0.05, which means the variance of the observed and 
models emission factors is equal.

Neural network: A cross-check was conducted in the validation 
stage to seek for an optimal structure, with which the modeled emission 
factors may be highly correlated to the observed ones. There are two 
steps in this check. The first step was to identify the number of neurons 
at the first hidden layer. The second was to identify the number of 

i( ) tanh(x )=iy x                                                                            (5)

y(Xi) = (1-exp(-Xi))-1                           (6)

where:

y = The output variable(s),

x = The input variables.

The machine learning based model results could be improved by 
increasing training and scoring times, which will be reflected by its 
structure as well. For a MLP, there would be up to two hidden layers 
with multiple neurons. Cross-check would be required to obtain an 
optimal structure, including the number of layer and neurons. 

Performance measures

The predictive performance of each modeling stage was evaluated 
by (1) the correlation coefficient between the observed values and the 
modeled values, (2) the relative errors, which were calculated from the 
difference between the observed and modeled emission factors divided 
by the observed values, and (3) the two tailed unequal variance t-test. 
The null hypothesis is that the observed and modeled population 
means are the same but the two population variances may differ. The 
null hypothesis will be accepted if the p value is greater than 95%. 
Compared with paired t-test, the unequal variance t-test is able to 
quantify how far apart the two means of the two population are [30].

Emission tests and data collection

On-broad vehicle emission tests were conducted along Texas 
highways in various regions, including El Paso, Austin, San Antonio, 
College Station, Houston, and other Southeast regions, from November 
2014 to June 2015 during sunny days. The tested routes include high-
speed freeways, rural highways, arterial roads, and local street, covering 
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Figure 2:  Neural network structure (source: Qiao et al., 2001).

Category
CO2 CO HC NOx

Normalized 
Index

k R p k R p k R p k R p k R p
A 4 0.98 0.94 4 0.85 0.62 3 0.80 0.37 4 0.78 0.78 4 0.86 0.75
B 5 0.97 0.76 4 0.66 0.10 5 0.83 0.45 3 0.89 0.49 4 0.71 0.15
C 4 0.93 0.80 4 0.89 0.76 3 0.89 0.71 5 0.91 0.25 4 0.94 0.65
D 3 0.99 0.94 3 1.00 0.96 3 0.96 0.85 3 1.00 0.98 4 0.99 0.97

Table 2: Cross-validation results based on correlation relationship and significant 
t-test.
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hidden layer and the neural number in the second layer (if possible). 
Figure 3 shows the check results. In Figure 3, a blue line tells that R 
values increase with the increase in neurons in one hidden layer. When 
10 neurons were used, the R value would be over 0.97. Thus, 10 neurons 
were identified for the first layer. For the possible second hidden layer, 
a cross-check was continued. a red line in Figure 3 demonstrates that 
adding second layer does not improve the R values. By the contrary, it 
dropped when the neuron further increases to 7 and 8. In response to 
this, 1 hidden layer with 10 neurons was confirmed for the structure of 
the NN model.

Model testing and validation 

Two models were executed three stages, including training, 
testing, and validation, based on the identified structure. Correlation 
coefficients were adopted to evaluate the level of curve fitting at the 
three stages. An overview of the correlation coefficients performed by 
the two models is listed on Table 3. 

Table 3 illustrates that the R-values by the two models are mostly 
higher than 0.50, which indicates a good fit with the observed values. 
More specifically, the R values of CO2 are overall higher than other air 
emissions in the three modeling stages. Except the R value of 0.77 and 
0.64 by NN in validation for category A and D, the R values are higher 
than 0.89. This implies that the two models can estimate CO2 emission 
more accurate than other air emissions. This could be attributed to their 
different emission patterns. Compared with CO2 emission pattern, 
other air emission patterns are more complex. The CO2 emission is 
proportional to the demand of power need for motion, which can be 
estimated by vehicle activity information, such as speed, acceleration, 
rpm. However, other air emissions are also subject to a number 
of conditions in a vehicle combustion system, such as the oxygen 
availability in the cylinder, sufficiency of mixture time between oxygen 
and fuel, and temperature. For example, Li et al. demonstrated that HC 
and CO emissions could be due to extremely insufficient mixture of 

oxygen and fossil fuel in a cylinder. Inversely, excessive availability of 
oxygen from air results in higher NOx emissions. Moreover, the CO 
emission pattern is the inverse of the emission pattern for HC. The 
unburnt fuel can be easily escaped from an exhaust pipe as HC at 
higher ambient temperature. 

Few R values marked in red are observed in the CO and NOx and 
Normalized Index (NI). In particular, the R values of CO presents lower 
correlative to the observed values. It is more likely that the emission 
pattern of CO is different from other studied air emissions here, which 
would be explored in next sub-section. Besides, the most lower R values 
in red were performed by NN model. Thus, in terms of curve fitting 
for these datasets, K-NN can estimate vehicle emissions more accurate 
than NN model.  

Fitted regression line: To obtain an insight into the emission 
pattern, serval typical fitted regression lines are plotted in Figure 4. 
Figure 4 shows that there are obviously more data points in category A, 
whereas there may be insufficient data points in category D to provide 
a generalized picture of the CO emission pattern. Hence, the modeled 
CO emission factor in category D may not be reliable. Moreover, the 
distribution of CO emission factors in category A (Figure 4a) are 
apparently more dispersive than in category B and C (Figures 4b and 
4c), up to 250 mg/mi. on the contrary, most CO emission factors are 
within 40 and 30 mg/mi in category B and C. 

Similarly, the NOx emission factors in category A (Figure 4e) 
distribute more dispersive than in category B (Figure 4f), and the 
emission level is clearly higher as well. Figures 4g and 4h provided a 
similar view in Figures 4a and 4b.

Emission factor: In this study, specific emission factors were 
quantified for the four categories with different level of pavement 
roughness, based on on-board emission tests. Based on the observed 
results, two models were developed. The comparison of the modeled 
values and the observed valued is illustrated in Figure 5.  

Figure 5 shows that the relationship between pavement roughness 
and emission factors is not linear, which is consistent with the previous 
study by Li et al. [6]. The smoother or the rough pavement may induce 
higher vehicle emissions. Besides, it seems that the developed k-NN 
slightly under estimate the emission factor in cross the four air emissions, 
particularly the estimation in category D. This could be explained by 
insufficient data points for such rough pavement during the on-road 
tests. Likewise, NN model also did not deliver a better estimate results 
for category D. Further, NN model slightly overestimates CO2 and 
NOx emissions, and underestimates HC emissions. 

Figure 3: Cross-validation result of correlation coefficient for CO2.

category Stage
CO2 CO HC NOx Normalized Index

K-NN NN K-NN NN K-NN NN K-NN NN K-NN NN

A
Training 0.96 0.98 0.84 0.73 0.77 0.58 0.78 0.74 0.84 0.71
Testing 0.96 0.97 0.87 0.41 0.85 0.72 0.77 0.42 0.88 0.36

Validation 0.98 0.77 0.85 0.04 0.80 0.88 0.78 0.36 0.86 0.08

B
Training 0.96 0.98 0.85 0.85 0.78 0.79 0.87 0.82 0.86 0.60
Testing 0.97 0.89 0.19 0.94 0.52 0.74 0.92 0.29 0.26 0.93

Validation 0.97 0.89 0.66 0.33 0.83 0.80 0.89 0.43 0.71 0.27

C
Training 0.96 0.99 0.59 0.82 0.54 0.84 0.86 0.79 0.66 0.92
Testing 0.99 0.91 0.69 0.35 0.98 0.60 0.95 0.43 0.81 0.51

Validation 0.93 0.98 0.89 0.31 0.89 0.80 0.91 0.65 0.94 0.56

D
Training 0.92 0.89 0.78 0.69 0.87 0.97 0.83 0.85 0.89 0.89
Testing 0.97 0.96 0.98 -0.43 0.99 0.34 0.99 0.83 0.99 0.97

Validation 0.99 0.64 1.00 0.12 0.96 0.92 1.00 0.72 0.99 0.98

Table 3: Correlation coefficients in three modeling stages.
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Figure 4: Fitted regression lines of CO in the four categories and NOx in category A and B.
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Conclusion
In this research, the K-NN and NN models are employed to model 

the emission factors based on the 1,609 km on-board emission tests 
in the state of Texas in United States. The modeling was conducted 
separately based on the range of pavement roughness (categories A, 
B, C, and D). The input variables include vehicle operational and 
engine information. Results show that, the K-NN model poses more 
accurate on the estimate of emission factor than the NN model in the 
four categories of pavement roughness. Meanwhile, the nonlinear 
relationship between vehicle emissions and pavement roughness is 
further validated. Driving on a smoother and rougher pavement result 
in higher vehicle emissions, which is consistent with the previous study 
by Li et al. [27].
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