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Introduction 
In last forty years lots of emphasize has been made to solve 

problems with the help of algorithms that rely on analogies to natural 
process [1-6]. Different algorithms and its hybridization evolved to give 
the best optimal point of a problem. However out of many approaches, 
the approach based on Genetic Algorithm have found great attention 
from the researchers all around the globe to deal with the optimization 
problem that have di cult dealing with conventional problem solving 
techniques [7-9]. In recent period, many ideas taken from the biological 
activity of an organism have contributed towards the development of 
the evolutionary algorithm. Scientist and researchers of recent time 
have been drawing inspiration from nature to tackle the complex 
search problems of the real world. One such inspiration can be drawn 
from the fact that E. coli bacteria moves taking small steps in search 
of nutrients, called chemotaxis. Lots of researchers have studied the 
behavior of this bacteria and emphasize that the movement of the 
bacteria is controlled by the run and tumble. E. coli senses chemoeffector 
gradients in temporal fashion by comparing current concentrations to 
those encountered over the past few seconds of travel.

In this paper, we present a hybridized chemotactic genetic 
algorithm by integrating the chemotaxis behaviour of the E. coli bacteria 
in genetic algorithm which shows an improved result when tested on 
benchmark objective functions. Each chromosome of the population 
in genetic algorithm points to one discrete point. On applying these 
chromosomes to the objective function we try to find the required 
optimal value and then these chromosomes are passed through 
crossover and mutation to obtain another set of good chromosome. 
If the positions of the chromosome swim in any vector direction in 
search of some good point from the present, a significant improvement 
in the result could be obtained.

Preliminaries
An overview of E. coli chemotaxis

Escherichia coli (E. coli) are bacteria which normally live in the 
intestines of living organisms. Most E. coli bacteria are harmless and 
actually are an important part of a healthy human intestinal tract. It 
is equipped with a set of rotary motors only 45 nm in diameter. Each 
motor drives a long, thin, helical lament that extends several cell body 
lengths out into the external medium. The assemblage of the motor and 
lament is called a flagellum [10]. The movement of the bacteria towards 

or away from chemicals called chemotaxis, is a universal attribute of 
motile cells and organisms. E. coli cells swim toward potentially non-
noxious amino acids (serine and aspartic acid), sugars (maltose, ribose, 
galactose, glucose), dipeptides, pyrimidines and electron accep-tors 
(oxygen, nitrate, fumarate) but runs away from potetially noxious 
chemicals, such as alcohols and fatty acids. Now, in isotropic chemical 
environments, E. coli swim in a random walk pattern produced by 
alternating episodes of counter-clockwise (CCW) and clockwise (CW) 
flagellar rotation (Figure 1, left panel). In an attractant or repellent 
gradient, the cells monitor chemoeffector concentration changes as 
they move about and use that information to modulate the probability 
of the next tumbling event (Figure 1, right panel). 

When the cell’s motors rotate CCW, the flagellar filaments form 
a trailing bundle that pushes the cell forward. When one or more of 
the flagellar motors reverses to CW rotation, that filament undergoes a 
shape change (flowing to the torque reversal) that disrupts the bundle. 
Until all motors once again turn in the CCW direction, the filaments act 
independently to push and pull the cell in a chaotic tumbling motion. 
Tumbling episodes enable the cell to try new, randomly determined 
swimming directions. Sensory information suppresses tumbling 
whenever the cell happens to head in a favorable direction. The cells 
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Figure 1: Run and Tumble of E. coli Bacteria.
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in sub optimal solutions. The different mutation techniques available in 
the literature are Makinen, Periaux and Toivanen mutation, Dynamic 
mutation, Power Mutation, Uniform Mutation, Boundary Mutation etc.

The Proposed Hybridized Chemo-Tactic Genetic 
Algorithm (HCGA)

In this section a new hybridized Genetic Algorithm has been 
developed in which the chemotaxis beahavior of E. coli bacteria has 
been captured as an operator in genetic algorithm by which searching 
procedure has been defined rather than simple genetic algorithm. In 
Simple Genetic Algorithm (SGA), each individual is a chromosome 
which has been obtained after encoding the variables present within 
the search space. Each variable represents a discrete point within its 
specified domain space. As it gets evolved or passes through different 
genetic operators such as crossover and mutation, it points to a 
position in the search domain which is at some significant distance 
from the previous points. The problem in this technique is that at most 
of the time it fails to traverse the very nearby points of the variables 
before using the genetic operators which otherwise could actually lead 
to attain a very accurate result of the considered optimization problem. 
This traversing the nearby points of the variables has been mimicked 
from the chemotaxis behaviour of E. coli bacteria which swims through 
the points for some swimming length distance in order to find the 
optimal position and then it tumbles itself to sense the next random 
direction of swimming through the search space to find the better 
optimal points. 

Figure 2 depicts the flowchart of the proposed algorithm. Here, 
in the proposed hybridization we allow the initial chromosomes to 
be generated randomly in the population. Then the chromosomes are 
allowed to swim from the current position p to position (p+∆), where ∆ 
indicates a very small displacement in the position of the variables in the 
random direction. This process of swimming will continue till it finds 
favourable condition but for limited period of time. The swimming of 
the chromosome helps to traverse the very nearby points in the random 
direction. This helps to get more optimum value of the optimization 
problem. Also, this feature helps to climb to good points which favour 
the need to optimization problem and at same time it avoids the points 
which are not favourable. This total process of swimming and tumbling 
for each chromosome will iterate as long as we get better position 
within the search domain of the variables or till maximum number of 
chemo-tactic step have been attained, whichever is earlier. The different 
components used in HCGA are described below:

(a) Chromosome representation: In this paper, the real number 
representation scheme is used. Here, the structure of a chromosome 
is a K dimensional real vector, X = (x1, x2, .…, xK), where x1, x2, .…, xK 
represent different decision variables of the problem.

(b) Initialization: Using the chromosome representation, a 
population set of N solutions (chromosomes) X1, X2,…., XN are 
randomly generated satisfying the upper and lower bound of the given 
domain space of the problems.

(c) Fitness value: All the chromosomes in the population are 
evaluated using the fitness function of the given problem. Here, the 
minimization of the value of an objective function f(X), due to the 
solution X, is taken as fitness of X.

(d) Selection process to create mating pool: Here, the binary 
tournament selection process of size 2 is used for all the benchmark 
problems. In this process, randomly choose any two chromosomes 
from the current population and select the best chromosome among 

cannot head directly upgradient because they are frequently knocked 
o course by Brownian motion. These locomotor responses extend 
runs that take the cells in favorable directions (toward attractants and 
away from repellents), resulting in net movement toward preferred 
environments. These behavioral responses to the environmental 
stimuli allow the bacteria to find optimal conditions for growth around 
their surroundings.

Genetic algorithm 

It is an algorithm mainly based on the ideas and the techniques 
from genetic evolutionary theory [11]. It follows the principle of the 
survival of the fittest and generates the next population by going 
through many operations, with each individual representing a possible 
solution. This algorithm has been applied to various domains such as 
inventory control, image processing, pipeline control, information 
retrieval etc. The basic operations that it performs are selection, 
crossover and mutation. A typical genetic algorithm generates some 
random populations which are being passed through a fitness function 
to judge whether it will contribute to the next generation of solutions. 
The chromosome which has greater probability of contribution to 
the next population gets selected. As in the biological process the 
sexual reproduction takes place which exchanges and reorders the 
chromosome to produce the offspring. The same is exhibited to the 
newly generated population by applying crossover operators to obtain 
child solution by mixing one or more parent solution. After the 
reproduction, the mutation operator is applied to the chromosome 
to bring about a variety of different chromosome in the population. 
The probability of mutation is generally low. This procedure is again 
iterated for a finite number of times to find the optimal parameters 
and its corresponding objective function value. The algorithm will 
terminate either when the maximum number of generations for 
iteration has been reached or desired fitness value of the population 
has been achieved. Genetic algorithm continually exploits new and 
better solutions without any pre-assumptions, such as continuity and 
unimodality. The application of crossover and mutation in almost all 
iteration avoids premature convergence of the problem. The different 
operators used in Simple Genetic Algorithm (SGA) are discussed in the 
following sections.

Selection: This operator is use to carry good chromosomes with 
better fitness from the current generation to the next generation in 
an assumption that the selected chromosomes when passes through 
crossover and mutation will have better result than the current 
generation. A careful strategy has to be negotiated so that most of the 
better chromosomes could be forwarded to the next generation and 
the worse could be left out. There are several selection schemes, such as 
roulette wheel selection, ranking selection, tournament selection, etc.

Crossover: It is a technique to randomly select two parents for 
mating from the population of chromosomes obtained from selection 
operator to produce a child called offspring. The obtained offspring 
is generally believes to be better that both the parents if it takes good 
characteristics from them. This crossover operator is controlled by the 
crossover probability pc. In the literature, lots of crossover techniques 
are present for real coded genetic algorithm, such as uniform crossover, 
arithmetic crossover, simulated binary crossover and many others.

Mutation: The mutation operator plays a very vital role in Genetic 
Algorithm. It helps to maintain diversification by incorporating some 
uniqueness between the chromosomes with some probability pm. It 
explores the unexplored points within the domain of the variables of 
the chromosome so that the premature convergence does not take place 
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them for creation of mating pool. This process is repeated N times to 
obtain the new N solution set for the next generation.

(e) Proposed new chemotactic operator: The E. coli bacteria 
always try to nd the optimal point with respect to its surroundings. 
It searches the optimal point through swimming and tumbling. The 
movement of the bacteria can be modeled mathematically and can be 
applied as new operator to the existing genetic algorithm for obtaining 
better optimal point. Consider the initial position of the bacteria as x1, 
x2, .…, xK in K dimensional real vector as an analogy to the chromosome 

in the problem space. Apply the following step for every chemotactic 
movement:

Step-1: for j= 1, 2,…., Nc, Nc is the number of chemotactic steps

Step-2: Displace each position xp, p=1,2,...,K in any random 
direction of a chromosome Xi, i=1,2,...,N such that:
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where, ∆(x) lies in [-1, 1] ψ and represents the step size of the 
chromosome in the random direction. 

Step-3: swim=0

Step-4: while (swim<Ns), Ns is the number of swim steps

Step-5: swim=swim + 1

Step-6: if (f(Xi(j+1)) < f(Xi(j)))
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Step-8: else swim=Ns 

Step -9: end while 

Step-10: end for

(f) Crossover: After the chemotactic process, for each solution of 
the population at the next generation, generate a random number r 
from the range [0….1]. If r<pc then the solution is taken for crossover. 
In this paper, the simulated binary crossover (SBX) [12] is chosen as 
crossover operator for each selected pair of coupled solutions X1, X2 to 
be replace by their offspring’s 
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Here βk(≥0) is a sample from a random number generator having 
the density
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The distribution index cη is any non-negative real number. A high 
value of cη will have the higher probability of creating near parent 
solution where as low value of c gives distant solution to be selected as 
child.

(g) Mutation: Here, for diversity of the population, the dynamic 
mutation operator [13] is used in the proposed algorithm:
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where the random constantτ becomes 0 or 1 and ∆(k, y) is given as
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where r is a random 0 or 1 and T is the maximum number of 
generation given.

Figure 2: Flowchart of HCGA.
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(h) Premature convergence: The premature convergence in 
genetic algorithm occurs due to loss of diversity in the population 
which avoids creation of better o spring than the parent. To avoid the 
premature convergence in the proposed algorithm, at the end of every 
generation the following is checked

|αc-αg|< ε                       (6)

where αc is the best chromosome of the current generation, αg is the 
best chromosome found till the current generation. If the Eq. (6) holds 
for consecutive 10 generations then the rate of mutation is significantly 
increased for subsequent one successive generation.

Therefore, the step-wise procedure of HCGA can be written as:

Step-1: Generate initial population P1 of size N

Step-2: i←1 [i represents the no. of current generation] 

Step-3: Obtain the fitness value of the optimization problem

Step-4: Apply chemotactic operator 

Step-5: Apply selection operator 

Step-6: Apply crossover operator 

Step-7: Apply mutation operator

Step-8: Compute the fitness value for next generation 

Step-9: Check for premature convergence: 

Step-10: Set i←1 + 1

Step-11: If termination condition does not hold, go to Step-4

Step-12: End

Numerical Illustration
To compare between the proposed Hybridized Chemotactic 

Genetic Algorithm (HCGA) and traditional Simple Genetic Algorithm 
(SGA), some test functions are collected as given in the Table 1. 
Each test function considered has a different behaviour in its search 
domain. For a uniform testing environment all the parameters used 
as in Table 2 kept same for all the test functions. To avoid premature 
convergence uniform mutation with increased probability is applied 
when the difference between the best value of the current generation 
and best optimal value till current generation is less than some value 
for consecutive 10 generations. The number of variables for all the test 
function is set to be 10 except for Booth’s function. Both the algorithms 
are compared and analyzed with 10 independent runs. For a particular 
test problem, a run is said to be a successful run if the best objective 
function value found in that run lies within 1% accuracy of the best 
known objective function value of that problem. The maximum 
numbers of generations are also fixed to be 2000 for both the algorithm. 
All the algorithms are implemented in C environment.

After considering the test functions, the average optimal function 
value of the 10 independent runs are shown in Table 3 and in Table 
4, an average optimal value of 10 independent runs at different 
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Table 1: Benchmark function used.

Algorithm Parameters
GA pc=0.9, pm=0.01, N=50

HCGA Nc=100, Ns=4, ѱ=0.001, pc=0.9, pm=0.01, N=50

Table 2: Parameters used for Benchmark function.

Test Functions SGA HCGA
Optimal Value Success Rate (%) Optimal Value Success Rate (%)

f1 0.233003 70 0 100
f2 0.126791 30 0.030271 60
f3 0 100 0 100
f4 0.000054 100 0 100
f5 0 100 0 100
f6 6.735035 0 5.556376 20

Table 3: Comparison between both the algorithms on test functions.
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generations are shown. From Table 3 it can be analyzed that the 
proposed method gives better value and has better success rate on most 
of the test functions and in some cases it gives same optimal value with 
100% success rate as of SGA. Also, from the result obtained in Table 4 
we can clearly state that the HCGA performs better at each generation 
of the test function than the SGA. Furthermore, to provide a fair basis 
comparison, we recorded the best, median and the worst solutions 
along with the average standard deviation of the 10 independent runs 
of both the algorithm. From the results shown in Table 5, it is clear that 
the proposed algorithm has slight edge on Simple Genetic Algorithm. 
Figures 3-8 compare the convergence of both the algorithm SGA and 

HCGA for the test functions f3 to f7 respectively. As evident from the 
Figures 3-8 that the both the algorithm have near about same value 
for initial 70 100 generations but after that in subsequent generation 
HCGA gains the advantage and performs better. From the given 
figures, it is quite clear that the proposed algorithm gives better optimal 
value with greater accuracy for all the used test functions.

Conclusion
This research article integrates the chemotaxis movement of 

the bacteria with the traditional Genetic Algorithm and presents 

Test
Function

Algorithm 200 400 600 800 1000 1200 1400 1600 1800 2000

f1 SGA 5.806156 5.472274 5.273376 4.183591 4.178828 0.742085 0.233003 0.233003 0.233003 0.233003
HCGA 4.775809 3.681447 3.482409 2.544939 1.88554 0.412678 0.000003 0 0 0

f2 SGA 0.506244 0.493729 0.493729 0.473954 0.460924 0.433497 0.340405 0.264181 0.126813 0.126791
HCGA 0.395546 0.346946 0.280493 0.249222 0.239264 0.231398 0.182504 0.176517 0.030277 0.030271

f3 SGA 0.003083 0 0 0 0 0 0 0 0 0
HCGA 0.000062 0.000059 0 0 0 0 0 0 0 0

f4 SGA 0.023897 0.023497 0.023497 0.023497 0.023497 0.023497 0.023497 0.019913 0.006276 0.000054
HCGA 0.010459 0.003488 0.003052 0.002797 0.001298 0.000541 0.000452 0.000064 0.000018 0.000007

f5 SGA 0.014785 0.014785 0.014785 0.014784 0.000006 0.000006 0.000006 0 0 0
HCGA 0 0 0 0 0 0 0 0 0 0

f6 SGA 9.865311 8.239281 7.397379 7.363624 7.350807 7.338222 7.327611 7.310072 7.13207 6.735035
HCGA 6.543331 6.421719 6.40028 6.372184 6.242879 6.083023 6.038328 5.920845 5.820096 5.556376

Table 4: Average optimal value of 10 independent runs at different generations.

Table 5: Performance comparison of SGA and HCGA on 10 independent runs.

Test Function Algorithm Best Median Worst Standard Deviation CPU Run Time
f1 SGA 0 0 1.927159 7.060083 15.2

HCGA 0 0 0 7.368378 231.6
f2 SGA 0 0.165332 0.217164 0.381243 15.5

HCGA 0 0.000002 0.217164 0.39666 208.1

f3

SGA 0 0 0 6.421538 25.5
HCGA 0 0 0 6.161951 216.8

f4

SGA 0 0.000019 0.000211 0.327974 28.9
HCGA 0 0 0.000181 0.334656 129.7

f5 SGA 0 0 0 0.117764 23.281
HCGA 0 0 0 0.114898 296.3

f6 SGA 3.650792 7.189775 7.383093 31.374885 29.7
HCGA 0.060152 6.940965 7.342589 31.87433 88

Figure 3: Convergence of SGA and HCGA for test function f1. Figure 4: Convergence of SGA and HCGA for test function f2.
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a new hybridized Chemotactic Genetic Algorithm. The behaviour 
of the new algorithm has been presented and illustrated explicitly 
using various test functions where we can depict that the proposed 
algorithm performs better than the SGA. The proposed algorithm can 
be extended or parameters of the algorithm could be ne tuned to give 
better optimum result.
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