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Introduction 

Group theory (GT) provides a rigorous framework for studying symmetries 
in a variety of physics disciplines, including quantum field theories and the 
standard model, as well as fluid mechanics and chaos theory. To date, the 
use of such a powerful tool in optical physics has been limited. However, in 
recent years, several quantum-inspired symmetry principles (such as parity-
time invariance and supersymmetry) have been introduced for the first time in 
optics and photonics. Despite the intense activity in these new research areas, 
only a few works have made use of the power of group theory. Motivated by 
this state of affairs, we present a brief overview of the application of GT in 
optics, carefully selecting examples that demonstrate the utility of this tool in 
both continuous and discrete settings [1].

Symmetry principles are critical in modern physics. Interest in symmetry 
concepts can be traced back to the ancient Greeks' early works on platonic 
solids. One of the first investigations that brought the concept of symmetry to the 
forefront of physical science was Emmy Noether's discovery that conservation 
laws and continuous symmetries are linked; for example, the conservation of 
energy, linear and angular momenta are a direct result of temporal, spatial, 
and rotational symmetries, respectively. Herman Weyl introduced the concept 
of gauge invariance almost simultaneously in an attempt to unify gravity and 
electromagnetism.

Except for a few notable examples, the tremendous progress in optics over 
the last few decades has benefited little from group theoretical techniques (see 
Ref. and references therein, as well as Refs. However, new research directions 
have emerged recently that exploit how quantum-inspired symmetries can be 
used to engineer novel optical structures. These include, for example, PT 
symmetry (and, more broadly, non-Hermiticity) and supersymmetry [2].

In this section, we will look at how group theory can be used to find 
special solutions to the scalar Helmholtz equation, with a focus on propagation 
invariant beams. In general, light propagation is described by Maxwell 
equations and their constitutive relations. For monochromatic fields in 
homogeneous, isotropic, and linear media, this takes the form of the vector 
Helmholtz equation. To that end, first-order symmetries of differential equations 
with either ordinary or partial derivatives are first-order differential operators. 
L transforms differential equation solutions into other solutions; that is, if is a 
differential equation solution, then L is also a solution. If L and L 0 are first-order 
symmetries, then any arbitrary linear combination L + L0 is also a first-order 
symmerty (and thus they form a vector space), and the product (composition 
of differential operators) Because LL0 is a second-order differential operator 
that maps solutions into solutions, it has second-order symmetry. Higher-order 
symmetries can be constructed in the same way [3].

If we reverse the propagation direction from z to y, we can recover the so-
called half-Bessel, half-Mathieu, and Weber accelerating optical beams from 
the above solutions in circular-, elliptic-, and paraboliccylindrical coordinates, 
in that order. Furthermore, nonparaxial accelerating waves have been 
constructed using spherically symmetric solutions to the scalar Helmholtz 
equation in parabolic, oblate and prolate spheroidal and spherical coordinates. 
MS Discrete photonics has emerged as a new paradigm for engineering optical 
structures with unique properties over the last two decades. These systems 
(often built with waveguide arrays as shown schematically) serve as testbeds 
for observing some intriguing phenomena predicted theoretically in the 
context of condensed matter, such as Bloch oscillations, dynamic localization, 
Anderson localization, and, more recently, topological insulators. Furthermore, 
the mathematical analogy between discrete arrays and quantum optics has 
recently been studied.

Discussion

When we consider the Helmholtz equation, we will create differential 
equations with prescribed (well-known) symmetry algebras and solve those 
using group-theoretical methods. For this purpose, we will use the number 
operator (which produces a linear propagation constant ramp) and the step-
up and step-down operators (or Susskind-Glogower operators, which produce 
the coupling between adjacent waveguides) as building blocks, which can be 
modulated by functions that depend on both the propagation distance and the 
number operator to produce the desired symmetry algebra [4].

Closed form solutions are difficult to find in general when some of the 
system's parameters vary with the propagation distance z. While the system 
can, of course, be solved numerically, analytical or semianalytical solutions 
can still provide deeper insight. The following sections demonstrate how group 
theoretical techniques can be used to help achieve this goal.

Previously discussed photonic systems, but with a semiinfinite array. This 
intriguing feature was discovered by noting that in the harmonic oscillator's 
symmetry algebra, there are both compact operators with discrete spectrum 
(featuring periodic oscillations) and non-compact operators with continuous 
spectrum (featuring free propagation). These two examples show how group 
theory can be used to not only find new solutions, but also to categorise 
photonics systems and predict new dynamics. Given the preceding 
discussion, and the increasing complexity of new photonic systems enabled by 
unprecedented simulation power and dense packing technologies, these new 
insights derived from group theory are unavoidable for studying and designing 
large photonic systems, as well as building complex optical devices with new 
functionalities [5].

Conclusion

It is important to note that group theory can provide insights that lead to 
the development of general frameworks for dealing with specific problems. 
Importantly, group theory enables us to categorise and analyse systems with 
similar symmetries in a unified manner regardless of dimensionality. Optical 
arrays with SU(2) symmetry, for example, will exhibit coherent oscillation 
dynamics that can be represented on the Poincare sphere. As a result, the 
behaviour of these arrays can be engineered using three independent rotations, 
an insight that would not have been possible without the use of group theory. 
Another application of group theory is the identification of a very unusual family 
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of optical arrays known as Glauber-Fock photonic lattices, which share the 
same symmetry group as the harmonic.
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