

A Generalization of the Eneström-Kakeya Theorem

Pukhta MS*

Division of Agriculture Statistics, Sher-e-Kashmir, University of Agricultural Sciences and Technology of Kashmir-191101, India

Abstract

In this paper we obtain a generalization of well-known result of Eneström -Kakeya concerning the bounds for the moduli of the zeros of polynomials with complex coefficients which improve upon some results due to A. Aziz and Q.G Mohammad and others.

Keywords: Polynomial; Zeros; Eneström-Kakeya Theorem

Introduction and Statement of Results

The following result known as Eneström - Kakeya theorem, is well known in the theory of distribution of zeros of polynomials was firstly proved by Eneström [1] and Kakeya [2].

Theorem 1.1: If $P(z) = \sum_{j=0}^n a_j z^j$ is a polynomial of degree n with real coefficients such that

$$a_n \geq a_{n-1} \geq \dots \geq a_1 \geq a_0 > 0, \\ \text{then all the zeros of } P(z) \text{ lie in } |z| \leq 1. \quad (1.1)$$

In literature [3-5] there exist several extensions of Eneström -Kakeya theorem. By using Schwartz lemma, Aziz and Mohammad [6] generalized Eneström -Kakeya theorem in a different way and proved:

Theorem 1.2: If $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with real positive coefficients. If $t_1 > t_2 \geq 0$ can be found such that

$$a_r t_1 t_2 + a_{r-1} (t_1 - t_2) - a_{r-2} \geq 0, \quad r = 1, 2, \dots, n+1; \quad a_{-1} = a_{n+1} = 0, \\ \text{then all the zeros of } P(z) \text{ lie in } |z| \leq t_1. \quad (1.2)$$

The following generalization of Theorem B is due to Rather et al [7].

Theorem 1.3: If $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree n with $\operatorname{Re} \alpha_j = \alpha_j$ and

$\operatorname{Im} \alpha_j = \beta_j, j = 0, 1, 2, \dots, n$. If $t_1 > t_2 \geq 0$, can be found such that

$$t_1 t_2 \alpha_r + (t_1 - t_2) \alpha_{r-1} - \alpha_{r-2} \geq 0 \text{ for } r = 1, 2, 3, \dots, k+1,$$

$$t_1 t_2 \alpha_r + (t_1 - t_2) \alpha_{r-1} - \alpha_{r-2} \leq 0 \text{ for } r = k+2, \dots, n+1,$$

and

$$t_1 t_2 \beta_r + (t_1 - t_2) \beta_{r-1} - \beta_{r-2} \geq 0 \text{ for } r = 1, 2, 3, \dots, m+1,$$

$$t_1 t_2 \beta_r + (t_1 - t_2) \beta_{r-1} - \beta_{r-2} \leq 0 \text{ for } r = m+2, \dots, n+1,$$

$0 \leq k \leq n, 0 \leq m \leq n, \alpha_{-1} = \beta_{-1} = \alpha_{n+1} = \beta_{n+1} = 0, \alpha_n > 0$ then all the zeros of $P(z)$ lie in

$$|z| \leq \frac{t_1}{|a_n|} \{ 2t_1^{k-n} (\alpha_k + t_2 \alpha_{k+1}) + 2t_1^{m-n} (\beta_m + t_2 \beta_{m+1}) - (\alpha_n + \beta_n) \} \quad (1.3)$$

In this paper, as a generalization of Theorem (1.3), We prove the following result.

Theorem 1.4: Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree $n \geq 1$ with $\operatorname{Re} \alpha_j = \alpha_j$ and $\operatorname{Im} \alpha_j = \beta_j, j = 0, 1, 2, \dots, n$. If $t_1 \geq t_2 \geq 0, t_1 \neq 0$ can be found such that

$$t_1 t_2 \alpha_r + (t_1 - t_2) \alpha_{r-1} - \alpha_{r-2} \geq 0 \text{ for } r = 1, 2, 3, \dots, k+1,$$

$$t_1 t_2 \alpha_r + (t_1 - t_2) \alpha_{r-1} - \alpha_{r-2} \leq 0 \text{ for } r = k+2, \dots, n+1$$

and

$$t_1 t_2 \beta_r + (t_1 - t_2) \beta_{r-1} - \beta_{r-2} \geq 0 \text{ for } r = 1, 2, 3, \dots, m+1,$$

$$t_1 t_2 \beta_r + (t_1 - t_2) \beta_{r-1} - \beta_{r-2} \leq 0 \text{ for } r = m+2, \dots, n+1,$$

$0 \leq k \leq n-1, 0 \leq m-1 \leq n, \alpha_{-1} = \beta_{-1} = \alpha_{n+1} = \beta_{n+1} = 0, \alpha_n > 0$ then all the zeros of $P(z)$ lie in

$$\left| z + \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{a_n} \right| \leq 2(\alpha_{k+1} t_2 + \alpha_k) \frac{t_1^{k+1}}{|a_n| t_1^n} + 2(\beta_{m+1} t_2 + \beta_m) \frac{t_1^{m+1}}{|a_n| t_1^n} \\ - \frac{t_2 \alpha_n + t_1 \beta_n + \alpha_{n-1}}{|a_n|} \quad (1.4)$$

For $\beta_j = 0, j = 0, 1, 2, \dots, n$ in the Theorem (1.4), we obtain the following result.

Corollary 1.5: Let $P(z) = \sum_{j=0}^n a_j z^j$ be a polynomial of degree $n \geq 3$ with real and positive coefficients. If $t_1 \geq t_2 \geq 0, t_1 \neq 0$ can be found such that

$$t_1 t_2 \alpha_r + (t_1 - t_2) \alpha_{r-1} - \alpha_{r-2} \geq 0 \text{ for } r = 1, 2, 3, \dots, k+1,$$

$$t_1 t_2 \alpha_r + (t_1 - t_2) \alpha_{r-1} - \alpha_{r-2} \leq 0 \text{ for } r = k+2, \dots, n+1,$$

$0 \leq k \leq n-1, a_{-1} = a_{n+1} = 0$, then all the zeros of $P(z)$ lie in

$$\left| z + \frac{a_{n-1}}{a_n} - (t_1 - t_2) \right| \leq t_2 + \frac{a_{n-1}}{a_n} + \frac{2t_2 \alpha_{k+1} + 2\alpha_k}{a_n t_1^{n-k+1}} \quad (1.5)$$

Remark

In general Theorem 1.4 also gives much better result than Theorem 1.3 for $0 \leq k \leq n-1$. For this we show that the circle defined by (1.5) is contained in the circle defined by (1.3). Let $z=w$ be any point belonging to the circle defined by (1.4) then

***Corresponding author:** Pukhta MS, Division of Agriculture Statistics, Sher-e-Kashmir, University of Agricultural Sciences and Technology of Kashmir-191101, India, Tel: 01954262260; E-mail: mspukhta_67@yahoo.co.in

Received January 08, 2014; **Accepted** May 29, 2014; **Published** June 02, 2014

Citation: Pukhta MS (2014) A Generalization of the Eneström-Kakeya Theorem. J Appl Computat Math 3: 164 doi:10.4172/2168-9679.1000164

Copyright: © 2014 Pukhta MS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

$$\begin{aligned}
 \left| w + \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{a_n} \right| &\leq 2(\alpha_{k+1} t_2 + \alpha_k) \frac{t_1^{k+1}}{|a_n| t_1^n} + 2(\beta_{m+1} t_2 + \beta_m) \frac{t_1^{m+1}}{|a_n| t_1^n} - \frac{t_2 \alpha_n + t_1 \beta_n + \alpha_{n-1}}{|a_n|} \text{ This gives} \\
 |w| &= \left| w + \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{a_n} - \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{a_n} \right| \\
 &\leq \left| w + \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{a_n} \right| + \left| \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{a_n} \right| \\
 &\leq 2(\alpha_{k+1} t_2 + \alpha_k) \frac{t_1^{k+1}}{|a_n| t_1^n} + 2(\beta_{m+1} t_2 + \beta_m) \frac{t_1^{m+1}}{|a_n| t_1^n} - \frac{t_2 \alpha_n + t_1 \beta_n + \alpha_{n-1}}{|a_n|} + \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{|a_n|} \\
 &= \frac{t_1}{|a_n|} \{2t_1^{k-n} (\alpha_k + t_2 \alpha_{k+1}) + 2t_1^{m-n} (\beta_m + t_2 \beta_{m+1}) - (\alpha_n + \beta_n)\}
 \end{aligned}$$

Hence the point $z = w$ belongs to the circle defined by (1.3) and therefore, the circle defined by (1.4) is contained in the circle (1.3).

Proof of the Theorem

Proof of Theorem 1.4: Consider the polynomial

$$\begin{aligned}
 G(z) &= (t_1 - z)(t_2 + z) P(z) \\
 &= -a_n z^{n+2} + \{a_n (t_1 - t_2) - a_{n-1}\} z^{n+1} \\
 &\quad + \sum_{v=2}^n \{a_v t_1 t_2 + a_{v-1} (t_1 - t_2) - a_{v-2}\} z^v \\
 &\quad + \{a_1 t_1 t_2 + a_0 (t_1 - t_2)\} z + a_0 t_1 t_2 \\
 &= -a_n z^{n+2} + \{a_n (t_1 - t_2) - a_{n-1}\} z^{n+1} \\
 &\quad + \sum_{v=2}^n \{a_v t_1 t_2 + a_{v-1} (t_1 - t_2) - a_{v-2}\} z^v \quad (a_{-2} = a_{-1} = 0)
 \end{aligned}$$

Let $|z| > t_1$, then

$$\begin{aligned}
 |G(z)| &\geq |z|^{n+1} \left\{ |a_n z + a_{n-1} - (t_1 - t_2) \alpha_n| - \sum_{v=0}^n |a_v t_1 t_2 + a_{v-1} (t_1 - t_2) - a_{v-2}| \frac{1}{|z|^{n-v+1}} \right\} \\
 &> |z|^{n+1} \left\{ |a_n z + a_{n-1} - (t_1 - t_2) \alpha_n| - |\beta_{n-1}| - |(t_1 - t_2)| |\beta_n| - \sum_{v=0}^n |a_v t_1 t_2 + a_{v-1} (t_1 - t_2) - a_{v-2}| \frac{1}{t_1^{n-v+1}} \right\}
 \end{aligned} \tag{1.6}$$

Now by hypothesis

$$\begin{aligned}
 \sum_{v=0}^n |a_v t_1 t_2 + a_{v-1} (t_1 - t_2) - a_{v-2}| t_1^v &\leq \sum_{v=0}^n |\alpha_v t_1 t_2 + \alpha_{v-1} (t_1 - t_2) - \alpha_{v-2}| t_1^v + \sum_{v=0}^n |\beta_v t_1 t_2 + \beta_{v-1} (t_1 - t_2) - \beta_{v-2}| t_1^v \\
 &\leq \sum_{v=0}^{k+1} |\alpha_v t_1 t_2 + \alpha_{v-1} (t_1 - t_2) - \alpha_{v-2}| t_1^v \\
 &\quad + \sum_{v=k+2}^n |\alpha_v t_1 t_2 + \alpha_{v-1} (t_1 - t_2) - \alpha_{v-2}| t_1^v \\
 &\quad + \sum_{v=0}^{m+1} |\beta_v t_1 t_2 + \beta_{v-1} (t_1 - t_2) - \beta_{v-2}| t_1^v \\
 &\quad + \sum_{v=m+1}^n |\beta_v t_1 t_2 + \beta_{v-1} (t_1 - t_2) - \beta_{v-2}| t_1^v \\
 &= 2(\alpha_{k+1} t_2 + \alpha_k) t_1^{k+2} - (\alpha_n t_2 + \alpha_{n-1}) t_1^{n+1} \\
 &\quad + 2(\beta_{m+1} t_2 + \beta_m) t_1^{m+2} - (\beta_n t_2 + \beta_{n-1}) t_1^{n+1}
 \end{aligned}$$

Using this in (1.6), we obtain

$$\begin{aligned}
 &|G(z)| \geq |z|^{n+1} \\
 &\left\{ \begin{aligned} &|a_n z + a_{n-1} - (t_1 - t_2) \alpha_n| \\ &- (\beta_{n-1} - (t_1 - t_2) \beta_n) - 2(\alpha_{k+1} t_2 + \alpha_k) \frac{1}{t_1^{n-k-1}} + (\alpha_n t_2 + \alpha_{n-1}) - 2(\beta_{m+1} t_2 + \beta_m) \frac{1}{t_1^{n-m-1}} \\ &\frac{1}{t_1^{n-m-1}} + (\beta_n t_2 + \beta_{n-1}) \end{aligned} \right\} \\
 &= |z|^{n+1} \left\{ |a_n z + a_{n-1} - (t_1 - t_2) \alpha_n| + t_1 \beta_n - 2(\alpha_{k+1} t_2 + \alpha_k) \frac{1}{t_1^{n-k-1}} + (\alpha_n t_2 + \alpha_{n-1}) - 2(\beta_{m+1} t_2 + \beta_m) \frac{1}{t_1^{n-m-1}} \right\} > 0 \\
 &\text{If} \\
 &|a_n z + a_{n-1} - (t_1 - t_2) \alpha_n| > 2(\alpha_{k+1} t_2 + \alpha_k) \frac{t_1^{k+1}}{|a_n| t_1^n} + 2(\beta_{m+1} t_2 + \beta_m) \frac{t_1^{m+1}}{|a_n| t_1^n} \\
 &\quad - (t_2 \alpha_n + t_1 \beta_n + \alpha_{n-1})
 \end{aligned}$$

Hence all the zeros of $G(z)$ whose modulus is greater than t_1 lie in the circle

$$\begin{aligned}
 &\left| z + \frac{\alpha_{n-1} - (t_1 - t_2) \alpha_n}{a_n} \right| \leq 2(\alpha_{k+1} t_2 + \alpha_k) \frac{t_1^{k+1}}{|a_n| t_1^n} + 2(\beta_{m+1} t_2 + \beta_m) \frac{t_1^{m+1}}{|a_n| t_1^n} \\
 &\quad - \frac{t_2 \alpha_n + t_1 \beta_n + \alpha_{n-1}}{|a_n|} \tag{1.7}
 \end{aligned}$$

Now we show that all the zeros of $G(z)$ whose modulus is less than equal to t_1 also lie in the circle defined by (1.4). Let $|z| \leq t_1$, then we have

$$\begin{aligned}
 &|a_n z + a_{n-1} - (t_1 - t_2) \alpha_n| \leq |a_n| t_1 + |\alpha_{n-1} - (t_1 - t_2) \alpha_n| \\
 &\leq t_1 \alpha_n + t_1 \beta_n + \alpha_{n-1} - (t_1 - t_2) \alpha_n \\
 &= 2t_1 \beta_n + 2(t_2 \alpha_n + \alpha_{n-1})
 \end{aligned}$$

By hypothesis

$$\sum_{v=k+2}^n \frac{a_v t_1 t_2 + a_{v-1} (t_1 - t_2) - a_{v-2}}{t_1^{n-v+1}} \leq 0, \quad 0 \leq k \leq n-1$$

This gives

$$2(t_2 \alpha_n + \alpha_{n-1}) \leq \frac{2(\alpha_{k+1} t_2 + \alpha_k)}{t_1^{n-k-1}} \tag{1.8}$$

Similarly for $0 \leq m \leq n-1$

$$2(t_2 \beta_n + \beta_{n-1}) \leq \frac{2(\beta_{m+1} t_2 + \beta_m)}{t_1^{n-m-1}} \tag{1.9}$$

Also we have

$$t_1 \beta_n \leq t_2 \beta_n + \beta_{n-1} \tag{1.10}$$

Combining (1.9) and (1.10), we obtain

$$2t_1 \beta_n \leq \frac{2(\beta_{m+1} t_2 + \beta_m)}{t_1^{n-m-1}} \tag{1.11}$$

Using (1.8) and (1.11) in (1.7), we have

$$\begin{aligned}
 &|a_n z + a_{n-1} - (t_1 - t_2) \alpha_n| \leq 2(\alpha_{k+1} t_2 + \alpha_k) \frac{t_1^{k+1}}{|a_n| t_1^n} + 2(\beta_{m+1} t_2 + \beta_m) \frac{t_1^{m+1}}{|a_n| t_1^n} \\
 &\quad - (t_2 \alpha_n + t_1 \beta_n + \alpha_{n-1})
 \end{aligned}$$

Since all the zeros of $P(z)$ are also the zeros of $G(z)$, we conclude that all the zeros of $P(z)$ lie in

$$\left| z + \frac{\alpha_{n-1} - (t_1 - t_2)\alpha_n}{a_n} \right| \leq 2(\alpha_{k+1}t_2 + \alpha_k) \frac{t_1^{k+1}}{|a_n|t_1^n} + 2(\beta_{m+1}t_2 + \beta_m) \frac{t_1^{m+1}}{|a_n|t_1^n}$$
$$- \frac{t_2\alpha_n + t_1\beta_n + \alpha_{n-1}}{|a_n|}$$

This completes the proof of the theorem.

References

1. Eneström G (1920) Remarque sur un théorème relatif aux racines de l'équation $a_n z^n + \dots + a_0 = 0$ où tous les coefficients sont réels et positives, *Tohoku Math J* 18: 36-40.
2. Kakeya S, On the limits of the roots of an algebraic equation with positive coefficients. *Tohoku Math* 140-142.
3. Anderson N, Saff EB, Verga RS (1979) On the Eneström -Kakeya theorem and its sharpness. *Linear Algebra and Applications* 28: 5-16.
4. Anderson N, Saff EB, Verga RS (1981) An extension of the Eneström -Kakeya theorem and its sharpness, *SIAM J Math Anal* 12: 10-22.
5. Cargo GT, Shishla O (1963) Zeros of polynomials and fractional order differences of their Coefficients. *J Math Anal Appl* 7: 176-182.
6. Aziz A, Mohammad QG (1984) Zero free regions for polynomials and some generalizations of Eneström-Kakeya theorem, *Canad Math Bull* 2: 265- 272.
7. Rather NA, Shakeel A, Simnani M I Mir (2007) On the Eneström-Kakeya theorem, *Intl J Pure and Appl Math* 41: 807-815.