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Introduction and Statement of Results
 The following result known as Eneström - Kakeya theorem, is well 

known in the theory of distribution of zeros of polynomials was firstly 
proved by Eneström [1] and Kakeya [2]. 

Theorem 1.1:  If ( )
0

n
j

j
j

p z a z
=

= ∑  is a polynomial of degree n with 
real coefficients such that

 1 1 0... 0n na a a a−≥ ≥ ≥ ≥ > ,	

then all the zeros of ( )p z  lie in 1z ≤ . (1.1)

In literature [3-5] there exist several extensions of Eneström 
-Kakeya theorem. By using Schwartz lemma, Aziz and Mohammad [6] 
generalized Eneström -Kakeya theorem in a different way and proved:

Theorem 1.2: If ( )
0

n
j

j
j

p z a z
=

= ∑  be a polynomial of degree n with 

real positive coefficients. If 1 2 0t t> ≥  can be found such that

( )1 2 1 1 2 2 1 10,   1,2,..., 1; 0r r r na t t a t t a r n a a− − − ++ − − ≥ = + = = ,           

then all the zeros of ( )p z  lie in 1z t≤ .                            (1.2)

The following generalization of Theorem B is due to Rather et al [7].

Theorem 1.3: If ( ) 0

n j
jj

P z a z
=

= ∑ be a polynomial of degree n 
with Re j jα α= and 

                  , 0,1,2, .,j jIm j nα β= = …… If  1 2 0t t> ≥  can be found such that

 ( )1 2 1 2 1 2 0r r rt t t tα α α− −+ − − ≥ for 1,2,3, .., 1r k= … +

( )1 2 1 2 1 2 0r r rt t t tα α α− −+ − − ≤ for 2, .., 1r k n= + … + ,

and

( )1 2 1 2 1 2 0r r rt t t tβ β β− −+ − − ≥ for 1,2,3, .., 1r m= … + ,

( )1 2 1 2 1 2 0r r rt t t tβ β β− −+ − − ≤ for 2, .., 1,r m n= + … +

1 1 1 10 ,0 , 0, 0n n nk n m n α β α β α− − + +≤ ≤ ≤ ≤ = = = = > then all the zeros of
P(z) lie in 

( ) ( ) ( ){ }1
1 2 1 1 2 12 2k n m n

k k m m n n
n

tz t t t t
a

α α β β α β− −
+ +≤ + + + − +  (1.3)

In this paper, as a generalization of Theorem (1.3) , We prove the 
following result.

Theorem1.4: Let ( ) 0
jn

j jP z a z
=

= ∑ be a polynomial of 
degree 1n ≥ with Re j jα α=  and , 0,1,2, ., .j jIm j nα β= = …… If  

1 2 10, 0t t t≥ ≥ ≠ can be found such that

( )1 2 1 2 1 2 0r r rt t t tα α α− −+ − − ≥ for 1,2,3, .., 1r k= … + ,

( )1 2 1 2 1 2 0r r rt t t tα α α− −+ − − ≤ for 2, .., 1r k n= + … +

and

( )1 2 1 2 1 2 0r r rt t t tβ β β− −+ − − ≥ for 1,2,3, .., 1r m= … + ,

( )1 2 1 2 1 2 0r r rt t t tβ β β− −+ − − ≤ for 2, .., 1r m n= + … + ,

1 1 1 10 1,0 1 , 0, 0n n nk n m n α β α β α− − + +≤ ≤ − ≤ − ≤ = = = = > then all the 
zeros of P(z) lie in 

( ) ( ) ( )
1 1

1 1 2 1 1
1 2 1 2

1 1

2 2
k m

n n
k k m mn n

n n n

t t t tz t t
a a t a t

α α
α α β β

+ +
−

+ +

− −
+ ≤ + + +

2 1 1n n n

n

t t
a

α β α −+ +
− (1.4)

For 0, 0,1,2, ,j j nβ = = … in the Theorem (1.4), we obtain the 
following result.

Corollary 1.5: Let ( ) 0

n j
jj

P z a z
=

= ∑ be a polynomial of degree 
n ≥ 3 with real and positive coefficients. If  1 2 10, 0t t t≥ ≥ ≠ can be found 
such that

 ( )1 2 1 2 1 2 0r r rt t t tα α α− −+ − − ≥ for 1,2,3, .., 1r k= … +

( )1 2 1 2 1 2 0r r rt t t tα α α− −+ − − ≤ for 2, .., 1,r k n= + … +

0 1k n≤ ≤ − 1 1 0na a− += = , then all the zeros of P (z) lie in

( )1 1 2 1
1 2 2 1

1

2 2n n k k
n k

n n n

a a tz t t t
a a a t

α α− − +
− +

+
+ − − ≤ + +                      (1.5)

Remark
In general Theorem 1.4 also gives much better result than Theorem 

1.3 for 0 1k n≤ ≤ − . For this we show that the circle defined by (1.5) is 
contained in the circle defined by (1.3). Let z=w be any point belonging 
to the circle defined by (1.4) then 
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( ) ( ) ( )
1 1

1 1 2 1 1 2 1 1
1 2 1 2

1 1

2 2
k m

n n n n n
k k m mn n

n n n n

t t t t t tw t t
a a t a t a

α α α β αα α β β
+ +

− −
+ +

− − + +
+ ≤ + + + − This gives 

( ) ( )1 1 2 1 1 2n n n n

n n

t t t t
w w

a a
α α α α− −− − − −

= + −

( ) ( )1 1 2 1 1 2n n n n

n n

t t t t
w

a a
α α α α− −− − − −

≤ + +

( ) ( ) ( )1 1
1 1 21 1 2 1 1

1 2 1 2
1 1

2 2
k m

n nn n n
k k m mn n

n n n n

t tt t t tt t
a t a t a a

α αα β αα α β β
+ +

−−
+ +

− −+ +
≤ + + + − +

( ) ( ) ( ){ }1
1 2 1 1 2 12 2k n m n

k k m m n n
n

t t t t t
a

α α β β α β− −
+ += + + + − +

Hence the point z = w belongs to the circle defined by (1.3) and 
therefore, the circle defined by (1.4) is contained in the circle (1.3).

Proof of the Theorem
Proof of Theorem 1.4:  Consider the polynomial

  ( ) ( ) ( ) ( )1 2G z t z t z P z= − +

           =  ( ){ }2 1
1 2 1

n n
n n na z a t t a z+ +

−− + − −

                ( ){ }1 2 1 1 2 22

n

v
a t t a t t a zν

ν ν ν− −=
+ + − −∑

                    ( ){ }1 1 2 0 1 2 0 1 2a t t a t t z a t t+ + − +

                    =  ( ){ }2 1
1 2 1

n n
n n na z a t t a z+ +

−− + − −

                             ( ){ }1 2 1 1 2 22

n

v
a t t a t t a zν

ν ν ν− −=
+ + − −∑        2 1( 0)a a− −= =  

Let  1z t>  , then

( ) ( ) ( )1
1 1 2 1 2 1 1 2 2 10

1nn
n n n nv

G z z a z a t t a a t t a t t a
zν ν ν ν

+
− − − − +=

  ≥ + − − − + − − 
  

∑
           

> ( ) ( ) ( )1
1 1 2 1 1 2 1 2 1 1 2 2 10

1

1nn
n n n n n nv

z a z t t t t a t t a t t a
tν ν ν να α β β+

− − − − − +=

 
+ − − − − − − + − − 

 
∑                                    	

						                    (1.6)

Now by hypothesis

( ) ( ) ( )1 2 1 1 2 2 1 1 2 1 1 2 2 1 1 2 1 1 2 2 1
0 0 0

n n n

v v v
a t t a t t a t t t t t t t t t t tν ν ν

ν ν ν ν ν ν ν ν να α α β β β− − − − − −
= = =

+ − − ≤ + − − + + − −∑ ∑ ∑

( )1
1 2 1 1 2 2 10

k

v
t t t t tν

ν ν να α α+

− −=
≤ + − −∑                             

( )

( )

( )

1 2 1 1 2 2 1
2
1

1 2 1 1 2 2 1
0

1 2 1 1 2 2 1
1

n

v k
m

v
n

v m

t t t t t

t t t t t

t t t t t

ν
ν ν ν

ν
ν ν ν

ν
ν ν ν

α α α

β β β

β β β

− −
= +

+

− −
=

− −
= +

+ − −

+ + − −

+ + − −

∑

∑

∑

                  

          ( ) ( )2 1
1 2 1 2 1 12 k n

k k n nt t t tα α α α+ +
+ −= + − +

           ( ) ( )2 1
1 2 1 2 1 12 m n

m m n nt t t tβ β β β+ +
+ −+ + − +

Using this in (1.6), we obtain 

( )

( )

( )( ) ( ) ( ) ( )

1

1 1 2

1 1 2 1 2 2 1 1 21
1

2 11
1

12 2

1 ( )

n

n n n

n n k k n n m mn k

n nn m

G z z

a z t t

t t t t t
t

t
t

α α

β β α α α α β β

β β

+

−

− + − +− −

−− −

≥

+ − −

− − −

 
 
 
 
 
 
 
 


− + + +

+


− +

+
      

= 
( ) ( ) ( ) ( )1

1 1 2 1 1 2 2 1 1 21 1
1 1

1 12 2 0n
n n n n k k n n m mn k n mz a z t t t t t t

t t
α α β α α α α β β+

− + − +− − − −

 
+ − − + − + + + − + > 

 

If 

( ) ( ) ( )
1 1

1 1
1 1 2 1 2 1 2

1 1

2 2
k m

n n n k k m mn n
n n

t ta z t t t t
a t a t

α α α α β β
+ +

− + ++ − − > + + +

	 ( )2 1 1n n nt tα β α −− + + 	

Hence all the zeros of G(z) whose modulus is greater than t1 lie in 
the circle

( ) ( ) ( )
1 1

1 1 2 1 1
1 2 1 2

1 1

2 2
k m

n n
k k m mn n

n n n

t t t tz t t
a a t a t

α α
α α β β

+ +
−

+ +

− −
+ ≤ + + +      

2 1 1n n n

n

t t
a

α β α −+ +
−    (1.7)                    

Now we show that all the zeros of  G(z) whose modulus is less than 
equal to t1 also lie in the circle defined by  (1.4). Let 1z t≤ , then we 
have 

( ) ( )1 1 2 1 1 1 2n n n n n na z t t a t t tα α α α− −+ − − ≤ + − −

( )1 1 1 1 2n n n nt t t tα β α α−≤ + + − −

( )1 2 12 2n n nt tβ α α −= + +

By hypothesis

( )1 2 1 1 2 2
1

2 1

0, 0 1
n

n
v k

a t t a t t a
k n

t
ν ν ν

ν
− −

− +
= +

+ − −
≤ ≤ ≤ −∑

This gives 

( ) ( )1 2
2 1 1

1

2
2 k k

n n n k

t
t

t
α α

α α +
− − −

+
+ ≤      		                 (1.8)

Similarly for 0 1m n≤ ≤ −

( ) ( )1 2
2 1 1

1

2
2 m m

n n n m

t
t

t
β β

β β +
− − −

+
+ ≤      		                   (1.9)

Also we have 

1 2 1n n nt tβ β β −≤ +     				                (1.10)

Combining (1.9) and (1.10) , we obtain

( )1 2
1 1

1

2
2 m m

n n m

t
t

t
β β

β +
− −

+
≤   			                                 (1.11)

Using (1.8) and (1.11) in (1.7), we have

( ) ( ) ( )
1 1

1 1
1 1 2 1 2 1 2

1 1

2 2
k m

n n n k k m mn n
n n

t ta z t t t t
a t a t

α α α α β β
+ +

− + ++ − − ≤ + + +

                                                    ( )2 1 1n n nt tα β α −− + + .
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Since all the zeros of P(z) are also the zeros of  G(z), we conclude 
that all the zeros of  P(z) lie in 

( ) ( ) ( )
1 1

1 1 2 1 1
1 2 1 2

1 1

2 2
k m

n n
k k m mn n

n n n

t t t tz t t
a a t a t

α α
α α β β

+ +
−

+ +

− −
+ ≤ + + +

2 1 1n n n

n

t t
a

α β α −+ +
−

This completes the proof of the theorem.
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