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Introduction
In genetic epidemiology, family data are often used to study 

genetically transmitted diseases as families sampled from affected 
individuals tend to include more cases and thus are more likely to 
harbor a disease gene mutation or a gene variant. Once a major gene 
related to a disease has been identified, the next step consists in trying 
to characterize and estimate its associated risks in the population 
(relative and absolute risks, allele frequency, attributable fraction, etc.). 
This could have important scientific and public health implications for 
developing intervention and prevention strategies for those genetically 
susceptible individuals. With the identified major genetic factors, the 
estimation of additional residual familial correlation is also needed 
to make correct inference about the major gene effect and to identify 
additional residual factors that could also have a genetic origin. The 
major gene effect associated with a disease can be expressed as the 
lifetime risk in gene carriers i.e., age-specific penetrance as a probability 
of developing a particular disease among mutation carriers when onset 
varies with age and relative risk between carriers and non-carriers of 
the mutated gene. Recent studies [1,2,3] have developed ascertainment-
corrected likelihood approaches for estimating such disease risks under 
various family-based study designs and for different genetic models. 
They have provided nearly unbiased estimates of penetrance except in 
the presence of a second gene effect or other causes of residual familial 
correlations. To directly model the residual familial correlations 
induced by unknown risk factors, we propose a frailty-based likelihood 
approach. In this paper, a shared frailty model is incorporated to 
better characterize the disease risks associated with identified gene 
mutations and familial correlation by taking the sampling design 
and ascertainment correction into account. The term frailty was first 
introduced by Vaupel et al. [4] in the survival model framework to 
account for unobserved heterogeneity in the study population. The 
use of the frailty model to describe population heterogeneity was 
also studied by several authors [5,6,7]. Further, the frailty model was 
extended to accommodate unknown common risk factors such as 
common environmental or genetic factors shared within clusters 
[8,9,10]. More recently, various authors utilized a family-specific frailty 
to describe the dependence within a family [11-16]. This model allows 

each family to share a random variable, which refers to as a frailty, to 
explain an unknown common risk factor within families. On the other 
hand, the independent model is occasionally used by simply ignoring 
the frailty in the model but with adjustment of familial correlation using 
a robust variance estimator. Keiding et al. [17] showed that ignoring 
the frailty effect can lead to an underestimation of the covariate effects 
under the misspecified model. Gong and Whittemore [18] found that 
the presence of additional risk factors, such as a second gene, could 
result in an upward bias in risk estimates.

The main objective of this paper is to develop a general framework 
for the shared frailty model for analyzing correlated time-to-event 
data arising from a family-based study. Analysis of this design also 
requires an ascertainment correction to make appropriate inference 
and inference about missing genotype data.

This paper begins with a description of a shared frailty model, 
followed by the likelihood formulations for the family-specific frailty 
model and the independent model (Section 2). These approaches are 
extended to account for the non-random ascertainment of family 
data. We then introduce robust variance estimators for the log relative 
risk and the cumulative lifetime risk (penetrance) associated with a 
major gene of interest. In Section 3, a simulation study examines the 
performance of the frailty and independent models in terms of bias 
and precision in the estimation of the model parameters. Section 4 
illustrates an application of the frailty model to an early-onset breast 
cancer study under complex sampling design from three population-
based family registries. Concluding remarks follow in Section 5.
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Abstract
Accurate estimates of disease risk (penetrance) associated with inherited gene mutations are critical for the clinical 

management of individuals at risk, but this estimation raises many statistical challenges especially when performed 
in a family-based design. In this paper, we propose a general frailty model-based approach to accommodate this 
design, where the frailty random effect accounts for shared risk among family members not due to the observed risk 
factors. It is of major interest when the goal is to discover other genetic variations besides the major gene and to get 
accurate estimates of penetrance (i.e. unbiased by unknown confounding factors). This approach is further extended 
to accommodate missing genotypes in family members and the non-random ascertainment of the families. Simulation 
results show that the proposed method performs well in realistic settings. Finally, a family-based breast cancer study of 
the BRCA1 and BRCA2 genes is used to illustrate the method.
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Methods 
A frailty model for family-based studies

Consider that the data arise from n families and each family 
consists of nf individuals, where f indexes families, f =1,…,n, and i 
indexes individuals, i =1,…,nf.

The following is the shared frailty model for the time to onset Tfi 
for individual i from family f. We note that this shared frailty model is 
more appropriate for nuclear families. Let Zf denote the frailty shared 
within family f. Given frailty Zf = zf and a vector of observed covariates 
Xi for individual i, the conditional proportional hazard model and the 
corresponding survivor function are given by 

 0( | , ) = ( ) ;Xi
fi fi f i f fih t z X z h t e β

 0( | , ) = exp{ ( ) },Xi
fi fi f i f fiS t z X z H t e β−                                   (1)

where h0(.) and H0(.) represent the baseline hazard and cumulative 
hazard functions, respectively.

The frailty model assumes that, conditional on the value of the 
frailty, Z, and the observed covariates, X, which include the mutation 
status and other covariates, the observations in a family are independent 
and the association between family members is a consequence of 
the frailty distribution whose density function is g(.; k), depending 
on the frailty parameter k. Thus, the frailty parameter, k, determines 
the dependence within families. For mathematical simplicity, we use 
gamma frailty [11,15,19] with mean 1 and variance 1/k since it has a 
close-form expression for the penetrance and likelihood functions. 
The frailty parameter, k, measures the magnitude of the dependence 
among ages of onset from family members, with a smaller value of k 
implying a stronger dependence. For the baseline hazard function, 
we use a Weibull distribution h0(t) = λρ(λt)ρ-1 as it enables flexible 
modeling of the baseline hazard, in particular with constant, increasing 
or decreasing hazards. 

Based on this model, our interest is in the following disease risks: 
relative risk and penetrance.

Relative risk: If we consider that the model includes a genetic 
variable that indicates the mutation carrier status, then the 
corresponding β represents the log hazards ratio between carriers and 
non-carriers of a mutated gene. Then, exp(β) is referred as to relative 
risks of disease between carriers and non-carriers.

Penetrance: The penetrance is the age-specific probability 
of developing a disease by a certain age t. It can be formulated as a 
cumulative distribution function of t given observed covariates X, i.e., 
F(t|X), which can be derived from equation (1) by integrating over the 
unknown frailty. Then, we can express the penetrance at age t as 

( | ) = 1 ( | , ) ( )f f fz f
F t X S t z X g z dz− ∫  

=1−{1+(λt) ρ eXβ/ k}-k,                                  (2)
using the Laplace transform of the gamma frailty distribution; details 
follow below.

Likelihood construction

Based on the conditional model given the frailty and observed 
covariates described in (1), we obtain the likelihood function for family 
f by integrating over the frailty distribution as 
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where φ (s) is the Laplace transform of the frailty distribution g(z), φ(d) 

(s) is the d th derivative of φ (s) with respect to s, and 
=1

= n f
f fii

d δ∑ .

The Laplace transform of the frailty distribution and its dth 
derivative have the following form 

0
( ) = ( ) ,zss e g z dzφ

∞ −∫
( ) ( ) = ( 1) ( ) .d d d zss z e g z dzφ −− ∫

To be more specific, the Laplace transform of the gamma frailty 
distribution and the Weibull baseline functions can be written as: 

 φ(s) = (1+s / k)-k
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where s=∑i(λti)
ρ eXiβ

Ascertainment correction

Family data are often collected through an affected individual, 
who is called the proband, and a correction for sampling bias needs 
to be applied to get unbiased parameter estimates. The likelihood is 
corrected by the probability of being ascertained through the proband 
who is affected by her or his age at examination afp [20,21] which can 
be expressed as: 

( < | ) = {1 ( | )} ( )fp fp fp fp f f fP T a x S a z g z dz−∫
( )0= 1 ( )

X fpz H a ef fp
f fe g z dz

β
−

− ∫
= Af (θ),                                                     (4)

where p indexes the proband.

The ascertainment-corrected likelihood arising from n families can 
be obtained by dividing each family’s likelihood contribution as in (3) 
by its probability of being ascertained as in (4), given as: 

=1

( )
( ) = ,
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n
fc

f f

L
L
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θ
θ∏

and the corresponding ascertainment-corrected log-likelihood can be 
expressed as: 

{ }
=1

( ) = ( ) ( ) ,
n

c
f f

f
θ θ α θ−∑ 

where lf(θ) = log Lf (θ) and αf (θ) = log Af (θ). Thus, we obtain the 
maximum likelihood estimator of the parameters θ =(β,ρ,λ,k) involved 

Advances in Markov Chain Monte Carlo 
Methods and Survival Analysis



Citation: Choi YH (2012) A Frailty-Model-Based Method for Estimating Age-Dependent Penetrance from Family Data. J Biomet Biostat S1:006. 
doi:10.4172/2155-6180.S1-006

Page 3 of 7

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journal

in the model, including the frailty parameter k by maximizing above 
ascertainment-corrected likelihood. Also, the age-specific penetrance 
estimate is obtained using the cumulative distribution function F(t|X) 
= P(T < t|X) in equation (2).

Missing genotypes

It is common that family data include missing genetic information. 
A modified segregation-based method can account for missing 
genotype information [3,19,20,]. It allows inference on missing 
genotypes by observed genotypes within families based on Mendelian 
transmission probabilities and genealogical relationships. Then the 
likelihood of a family is calculated by 

( ) = ( | ) ( ),f f
G

L L G P Gθ θ∑                                                   (5)

where the summation is over all possible genotype combination G of 
family members with missing genotypes given observed genotypes 
within the family with respect to the corresponding genotype 
probability P(G). Here, the genetic probability P(G) is determined 
by using Hardy-Weinberg equilibrium and Mendelian transmission 
probability in dependence on observed genotypes of parents or siblings. 
This segregation-based method for handling missing genotypes was 
implemented in R [22].

Robust variance estimator

For consistent variance estimation, the variance matrix of the 
parameters θ is obtained by the sandwich estimator 

1 1ˆ( ) = ( ) ( ) ( ) ,o oVar I J Iθ θ θ θ− −

where J(θ) is the expected information matrix and I0(θ) is the observed 
information matrix, they can be obtained by 
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Robust variance estimator for penetrance: An asymptotic 
variance estimator for age-specific penetrance ˆ( ; )F t θ  is obtained 
using the Delta method 

ˆ ˆVar{ ( ; )} = ( ) ( ) ( ),F t D t Var D tθ θθ θΤ

where Dθ (t) is the vector of partial derivatives of F (t;θ) and ˆ( )Var θ  is 

the robust variance estimator for parameters θ.

Simulation Study
Family data generation

The simulation of family follows the principles described in Choi 
et al. [20]. We consider unclear families of size four---two parents and 
their two offspring, one of whom is the proband (an affected individual 
from whom the family is selected). At the first stage, all family members’ 
ages at examination using a normal distribution with mean age 65 for 
the first generation and 45 for the second generation, with variance 
fixed at 2.5 years for both generations. It resulted in an average of 20 
years difference between the parents and offspring. At the next stage, 
the proband’s genotype of a major gene was determined conditioning 
on the proband’s affection status by her/his age at examination, 

assuming Hardy-Weinberg equilibrium (HWE) and fixed population 
allele frequencies. The proband is required to be a mutation carrier 
of the major gene. Given the proband’s genotypes, the genotypes of 
the other family members were then determined using HWE and 
Mendelian transmission probabilities calculated with Bayes’ formula. 
To incorporate familial correlation, a proband’s frailty Z was generated 
conditional on ascertainment via the proband being affected before 
her/his age at examination, i.e., 

Z ~ Z* | T < ap,

where Z* assumed to follow a Gamma distribution with mean 1 and 
variance 1/k and T to follow a Weibull model. We let the generated 
frailty value be shared among family members. The distribution of 
the frailty conditional on the proband being affected before the age 
at examination was derived in Appendix. Once we simulated the age 
at examination, genotype information for all family members and the 
shared frailty for the family, then the time-to-onset of individual i was 
simulated from the shared frailty model, 

h(ti|z,xi) = h0 (ti)z exp(θxi),

where xi indicates if the ith individual of the family is a carrier of disease 
mutation gene, z represents the frailty value shared within the family 
and the baseline hazard was assumed to follow the Weibull distribution 
which has a form, h0 (t)= λρ{λ(t−20)}ρ−1, assuming the minimum age of 
20 years at onset.

The proband’s age at onset was generated conditioning on the fact 
that the proband was affected before his(her) age at examination, ap, 

Tp ~ T | T< ap.

For the rest of family members, their times to onset were generated 
unconditionally. We also assumed the maximum age for followup 
was 90 years of age. Finally, the affection status, δi, for individual i was 
determined by comparing the age at onset, Ti, and age at examination, 
ai; δi =1 if Ti < ai, and 0 otherwise.

Simulated scenarios

Data were simulated under different configurations. Each 
configuration, we simulated 500 random samples of 1000 families 
each, which are similar to the available sample sizes from many familial 
cancer registries.

We assumed Weibull baseline hazard functions with scale (λ) and 
shape (ρ) parameters equal to 0.012 and 3. This leads to a cumulative 
risk (i.e. 1 - survival probability) of 19% in the non-carrier group by 
age 70. Two penetrances were considered: high and low penetrances 
correspond to the log relative risk of a major gene (β) equals to 2 and 
1, respectively. The high penetrance represents the lifetime risk of 80% 
by age 70 among carriers of a major gene, which assumes a rare gene 
(allele frequency=0.02) under the dominant model. The low penetrance 
provides the lifetime risk of 44% among common gene carriers (allele 
frequency=0.3) under the recessive model.

We considered two sources of familial correlation: one induced by 
1) a frailty and the other by 2) a second gene variation. For case 1), the 
frailty parameter k took the values 2, 4 and 8 that could be regarded as 
high, medium and low intra-familial correlation. Simulated data were 
evaluated using the family-specific frailty model and the independent 
model which assumes no familial correlation as comparison. The bias 
and precision of log relative risk and penetrance estimates from the 
frailty and independent models were summarized in Tables 1 and 2.
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For case 2), the second gene effect set to β2=1.6 and 0.7 for large 
and small familial correlations, respectively, and the second gene was 
generated by assuming an unknown second gene under the dominant 
model with the allele frequency 0.2. The simulated data were fitted 
using the independent, frailty and two-gene models. The two-gene 
model assumes the presence of an unknown second gene as an addition 
to the major gene in the model. The bias and precision of log relative 
risk and penetrance estimates from the independent, frailty and two-
gene models were summarized in Tables 3 and 4.

Simulation results

Shared frailty: Two modeling approaches---frailty and 
independent models were compared for different penetrance values 
(high and low) and for different magnitudes of familial dependence 
(k=2,4,8). We summarized our simulation results in Tables 1 and 2 for 
the estimation of the log relative risk (β) and the penetrance by age 70 
in terms of average bias ×100 (Bias%), robust standard error (SE) and 
root mean square error (RMSE).

Log relative risk estimation: Table 1 presents the summary of the 
simulation results in terms of accuracy and precision for estimating the 

log relative risk (β). The family-specific frailty model led to accurate 
estimates of the log relative risk for both high and low penetrances 
regardless of the k values; the magnitude of the bias ranged from −0.52% 
to 0.50% using the frailty model, whereas the independent model 
slightly underestimated the log relative risk; higher familial correlation 
(k=2) yielded more severe bias (Bias%= −15.1 and -5.22 under high 
and low penetrances, respectively). The magnitude of the bias was in 
general smaller than the SEs, which ranged from 0.085 to 0.099 in our 
settings. Although the frailty model yielded more reliable estimates 
of the log relative risks for both high and low penetrance settings, the 
independent model performed more efficiently in the presence of small 
familial correlation as expected; RMSEs from the independent model 
and frailty model were 0.125 vs. 0.131 for high penetrance and 0.131 vs 
0.134 for low penetrance when k=8.

Penetrance estimation: The simulation results in terms of accuracy 
and precision for estimating the penetrance by age 70 among carriers 
were summarized in Table 2. Similar to the relative risk estimation, the 
family-wise frailty model also yielded accurate penetrance estimates 
(Bias%= −0.09 ~ −0.58). The independent model also led to substantial 
bias in penetrance estimates (Bias% = 16.42 ~ 4.21) for both high 

   Frailty Model  Independent Model 
Penetrance  k  Bias%  SE  RMSE  Bias%  SE  RMSE 
High  2  0.47  0.099  0.138  -15.10  0.085  0.181 

 4  0.50  0.099  0.135  -8.49  0.087  0.143 
 8  0.46  0.097  0.131  -4.43  0.088  0.125 

 Low  2  -0.19  0.095  0.130  -5.22  0.089  0.130 
 4  -0.52  0.097  0.132  -3.13  0.094  0.129 
 8  -0.12  0.098  0.134  -1.57  0.097  0.132 

Bias% = Bias×100
Table  1: (Shared frailties) Estimating the log relative risk (RR) of the major gene effect: Bias, robust standard error (SE) and root mean square error (RMSE), comparison 
of frailty and independent modeling approaches.

    Frailty Model  Independent Model 
Penetrance  k  Bias%  SE  RMSE  Bias%  SE  RMSE 
High  2 -0.57  0.067  0.090  16.42  0.021  0.166 

 4 -0.58  0.057  0.079  9.06  0.022  0.094 
 8 -0.43  0.050  0.068  4.84  0.023  0.056 

 Low  2 -0.09  0.059  0.079  14.60  0.028  0.149 
 4 -0.10  0.054  0.073  7.85  0.028  0.084 
 8 -0.10  0.050  0.066  4.21  0.027  0.054 

Bias% = Bias ×100

Table  2: (Shared frailties) Estimating penetrance by age 70 among mutation carriers: Bias, robust standard error (SE) and root mean square error (RMSE) in 
comparison of frailty and independent modeling approaches.

High Penetrance (β1 = 2)
β2 = 0.7  β2 = 1.6 

Model  Bias%  SE  RMSE  Bias%  SE  RMSE 
 Independent  -33.80  0.080  0.348  -54.75  0.082  0.553 
Frailty  -4.99  0.097  0.136  -23.41  0.100  0.259
2-gene model  -7.90  0.115  0.170  -14.22  0.110  0.198 
Low Penetrance (β1 = 1)

β2 = 0.7  β2 = 1.6 
Model  Bias%  SE  RMSE  Bias%  SE  RMSE 
 Independent  -12.82  0.076  0.156  -24.36  0.070  0.254 
Frailty  -2.36  0.085  0.116  -13.48  0.078  0.163
2-gene model  0.44  0.099  0.133  -2.11  0.092  0.126 

Bias% = Bias×100
Table  3: (Second gene variation) Estimating the log hazards ratio of major gene effect in the presence of a second gene: Bias, robust standard error (SE) and root 
mean square error (RMSE) in comparison of the three models.
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and low penetrances. The penetrance was more overestimated in the 
presence of higher familial correlation. In terms of RMSE, the frailty 
model provided more efficient penetrance estimates for family data 
with high to medium familial correlation than the independent model 
for both high and low penetrances. For example, RMSE=0.09 for the 
frailty model, 0.166 for the independent model when k=2 (high familial 
correlation) under high penetrance.

Use of frailty model in the presence of a second gene variation: 
We suppose that there exists a second gene, other than a major gene 
shared within families to induce familial correlation, instead of frailty. 
This second gene was considered as completely unobserved. For 
modeling heterogeneity due to the unknown second gene, the shared 
frailty model was applied to take into account the familial correlation 
due to the second gene for estimating the log hazards ratio of the major 
gene (Table 3) and penetrance (Table 4). In addition, the simulated 
data with the two genes were fitted using the two-gene model which 
assumes the presence of an unknown second gene (dominant) as an 
addition to the major gene in the model.

The bias and efficiency of log hazards ratio and penetrance 
estimates from the three model (independent, frailty and two-gene 
models) were summarized in Table 3. The frailty model provided 
relatively accurate estimates of the major gene in the presence of the 
small second gene variation (β2=0.7); they were slightly negatively 
biased about 5% and 2% for high and low penetrances, respectively. 
However, when a large second gene effect was present (β2=1.6), both 
the frailty and independent models substantially underestimated the 
major gene effect (Bias= −13%~ −54%) whereas the two-gene model 
performed well in general providing relatively accurate estimates of the 
major gene under low penetrance.

For estimating the penetrance, Table 4 shows different models 
worked differently for high and low penetrances, depending on the 
second gene variations. The two-gene model provided the most 
accurate and efficient penetrance estimates under the high penetrance 
(β1=2) among the three models while the frailty model performed well 
in terms of both accuracy and precision under the low penentrance 
(β1=1). Interestingly, in the presence of larger second gene variation 
(β2=1.6), the frailty model worked better providing less bias and 
smaller SEs.

Application to an Early Onset Breast Cancer Study
The data

We applied our approach to a family study of early-onset breast 

cancer among BRCA1/2 mutation carriers. The goal is to estimate the 
genetic relative risk and penetrance associated with mutations in the 
BRCA1 and BRCA2 genes separately.

The family data were collected from three population-based breast 
cancer family registries (Ontario, Northern California and Australia) 
as a part of the NCI-funded Breast Cancer Family Registries initiatives 
[23]. In this study we focus only on the early breast cancer families 
whose probands were affected before the age 40.

A total of 1505 early breast cancer families were identified by the 
three registries including 974 families genotyped for either BRCA1 or 
BRCA2. For BRCA1 analysis, we used 924 families (including 334, 248, 
and 342 families from Australia, Ontario, and Northern California, 
respectively) after exclusion of BRCA2 positive families in order to 
remove any possible confounding in the baseline risk estimation. 
Similarly, 876 families were used for BRCA2 analysis (321, 225, and 
330 families from Australia, Ontario, and Northern California, 
respectively) after exclusion of BRCA1 positive families.

Results

The family data sampled from three population-based breast cancer 
registries were fitted into the proposed frailty model and independence 
model. The log relative risk and penetrance estimates for BRCA1 
and BRCA2 are summarized in Table 5. The missing genotypes were 
inferred using a segregation-based approach described in equation (5), 
based on the observed genotype information available within families.

The parameters were estimated in two stages. First, the population 
allele frequency was estimated independently from the other 
parameters, using observed genotypes of founders. Then, considering 
it fixed, the other parameters were estimated by maximizing the 
ascertainment-corrected likelihood. The minor allele frequencies for 
BRCA1 and BRCA2 genes were 0.034 and 0.017, respectively. These 
estimates might be slightly overestimated because of ascertainment, but 
these estimates were close to published allele frequencies for BRCA1 
and BRCA2 in USA [24], see (Table 2).

For BRCA1, the relative risk of breast cancer was estimated at e1.11 = 
3.03 (SE=1.08) under the independent model and e1.212 = 3.36 (SE=0.64) 
incorporating the presence of familial correlation. For BRCA2, the 
relative risks were 3.47 (SE=1.13) with the independence assumption 
and 3.87 (SE=0.67) with the familial correlation.

Among BRCA1 mutation carriers, the lifetime risk estimates 
of breast cancer at age 70 were 0.61 (SE=0.12) ignoring the familial 
dependence and 0.64 (SE=0.07) with familial correlation. Also, among 
BRCA2 mutation carriers, they were 0.67 (SE=0.11) and 0.65 (SE=0.06).

High Penetrance (β1 = 2)
β2 = 0.7  β2 = 1.6 

Model  Bias%  SE  RMSE  Bias%  SE  RMSE 
 Independent  7.14  0.014  0.073  9.14  0.010  0.092 
Frailty -19.64  0.072  0.210  -8.70  0.045  0.101
2-gene model  1.90  0.073  0.086  3.64  0.036  0.057 
Low Penetrance (β1 = 1)

β2 = 0.7  β2 = 1.6
Model  Bias%  SE  RMSE  Bias%  SE  RMSE 
 Independent  17.13  0.025  0.173  18.86  0.020  0.190
Frailty  -9.72  0.062  0.120  -1.37  0.047  0.065 
2-gene model  13.21  0.109  0.186  12.12  0.073  0.147 

Bias% = Bias×100
Table  4: (Second gene variation) Estimating the penetrance by age 70 among carriers in the presence of a second gene: Bias, robust standard error (SE) and root 
mean square error (RMSE) in comparison of the three models.
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Based on these estimates, BRCA2 gene appeared to have higher 
risks than BRCA1 gene both relatively and absolutely. Importantly, we 
notice that the relative risks were estimated slightly larger with higher 
precision (smaller SEs) when the familial correlation was taken into 
account compared to when it was ignored whereas the lifetime risks did 
not show this pattern; the shared frailty model provided higher lifetime 
risk estimates for BRCA1 carriers than the independent model but both 
models produced similar lifetime risk estimates for BRCA2 carriers.

In addition, we obtained the Akaike information criterion (AIC) 
values to compare these three modeling approaches shown in Table 
6. The share frailty model yielded the smallest AIC values which 
demonstrates better fit than the independent model.

Summary and Conclusion
Familial time-to-event data arising from genetic studies include 

several features. First, family data are correlated. Second, the sampling 
of family data is often based on complex study designs. Third, 
data include some missing genetic information. In this paper, we 
investigated a family-specific frailty modeling approach for analyzing 
correlated time-to-event data to account for familial correlation and 
introduced an ascertainment-corrected likelihood approach to take the 
study design into account. Last, a modified segregation-based method 
enabled us to infer missing genotype data based on the observed 
genotype information provided within families.

In our statistical framework, we assumed a relatively simple 
ascertainment correction based on single ascertainment (which 
conditions on the observed age and genotype of the actual proband), 
where families were ascertained with probability proportional to the 
number of affecteds [19,21,25] and the observed pedigree structure was 
independent of who were the probands [26]. Since the probands have 
been identified through population-based cancer registries in the first 
stage of the study and their relatives selected only in a second stage, 
the single ascertainment seems reasonable. However, some families 
might also have been ascertained because they included multiple 
affected probands. In that situation, a more appropriate correction 
for ascertainment would be to condition on the probability that the 
family include at least one affected proband. However, calculating the 
exact ascertainment probability is computationally challenging as it 
involves a complex summation over all possible genotypes, phenotypes 
and frailties of the whole family. Alternatively, some forms of weighted 
likelihood have been proposed to handle complex ascertainment 
schemes within the Breast cancer family registries, where the weights 
are the inverse sampling probabilities for families and parameter 
estimates are obtained through a pseudo-likelihood [26] or a composite 
likelihood approach [2,27]. With frailty models, the computation of 
these likelihoods are also challenging but we are currently working on 
this extension.

 Log Relative Risk  Penetrance by age 70 
Model  BRCA1 (SE)  BRCA2 (SE)  BRCA1 (SE)  BRCA2 (SE ) 
Independent 1.109 (0.357)  1.243 (0.325) 0.609 (0.116)  0.665 (0.109) 
Frailty 1.212 (0.189)  1.354 (0.173) 0.639 (0.067)  0.646 (0.063) 

Table  5: Log relative risk and penetrance estimates of BRCA1 and BRCA2 genes.

Model  BRCA1  BRCA2 

Independent  11584  10999 

Frailty  11566  10978 

Table  6: AIC values for comparison of different modeling approaches.

Our simulation study examined their consistencies and efficiencies 
for estimating relative and lifetime risks of a major gene, under both 
high penetrance with dominant model and low penetrance with 
recessive model. We found that the family-specific frailty model 
performed well for estimating both relative and lifetime risks in the 
presence of high to moderate familial correlation. However, when the 
familial correlation was weak, the independent model provided good 
results.

Our early onset Breast Cancer study also demonstrated the 
importance of incorporating the familial correlation in the analysis of 
correlated time-to-event data. The frailty-based likelihood approach 
was effectively implemented for modeling familial correlation for 
family data from population-based family registries. For future 
research, we can extend our modeling approach with univariate frailty 
distribution to use of multivariate frailty distributions for correlated 
frailties to better accommodate more complicated familial correlation 
structure.
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