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Introduction
The Internet has merged into our daily life because of its usage and 

enormous size: it is estimated that at least 8 x 108 documents and links 
covering almost every categories that we need [1]. Since the increasing 
number of fixed and mobile Internet-enabled devices, economic value 
of the Internet grows as well. In 2009, the Internet contributed about 3.8 
% of the United States (U.S.) Gross Domestic Product (GDP) and the 
U.S. has led the Internet supply ecosystem [2-4]. Due to its popularity 
and financial capability, the Internet has become a target of many 
criminals and terrorists. In the first quarter of year 2012, there were 83 
million pieces of malware including 8 thousand mobile malware; more 
than 1 trillion messaging threats (e.g. email spam); more than 4 million 
messaging botnets; huge number of network threats (e.g. Remote 
Procedure Call (RPC), SQL injection, Browser, cross-site scripting, 
etc.); and about 8 million websites hosting malicious downloads or 
browser exploits. The U.S. was almost at the top of every listed attack 
category [5]. Meanwhile, the number of cyber-attack on U.S. critical 
infrastructures (e.g. dams, energy, water, and cross-sector) increased 
sharply from 2009 to 2011 (from 9 incidents to 209 incidents) [6]. The 
report [7] conducted by Ponemon Institute in August 2011 revealed 
that average financial impact of every victim (private company) due to 
cyber-crime is in the range from 1.5 million to 3.6 million U.S. dollars 
and is about 56 percent increase from their last year’s report. This report 
also indicated there is more than 1 successful attack per company per 
week and such a number is 44 percent increase compared to their last 
year’s report. Paolo Passeri [8] presented monthly reports in cyber-
attacks statistics. His observation indicated that Denial of Service (DoS) 
attack is the top three attack techniques affecting the stability of the 
Internet. Since flooding-based DoS attack could be launched with very 
less effort comparing with other attacks, it has been widely adopted 
to flood resources of victims and cause service disruption. There have 
been many approaches proposed to reduce Internet threats [9-23]. 

In this paper, we are interested in flooding-based DoS attack 
since its simplicity. We develop a fluid-based approach for modeling 
simulated normal and malicious flooding-based DoS network activities. 
To achieve objectives of this paper, we first analyze raw traffic traces and 
calculate statistical data of them. We then, mimic normal and malicious 
flooding-based DoS network traffic and depict a fluid-based model to 
study network activities.

Our approach is based on an observation that malicious flooding-
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based DoS network activities are not isolated, but related as different 
stages of a series of cyber-attacks. Intuitively, their traces could be 
caught even though they are carefully hidden behind normal network 
activities and have forged footprints. For example, the distribution of 
inter-arrival time of a series of malicious requests on a web-server could 
be identified even through those malicious requests implemented with 
forged IP headers. In order to launch a successful flooding-based DoS 
attack, the hacker has to make large enough requests to overwhelm the 
target’s service capacity. Therefore, such malicious service requests are 
tended to be intensive and follow best-effort approach.

The remainder of this paper is organized as follows: Section 2 
reviews related work. Section 3 covers background of flooding-based 
DoS attack. Section 4 introduces the simulated normal and malicious 
traffic. Section 5 describes characteristics of the selected network 
traffic captured by CADIA. Section 6 explains fluid-based approach 
on a single congested network. Section 7 discusses performance of 
our model under the simulated normal and malicious traffic. Section 8 
concludes this paper and points out future work.

Related Work
Several literatures have studied and addressed strategies 

for mitigating cyber-attacks. Lobo et al. [9] studied attacks and 
countermeasures of the Windows Rootkits: software that is used 
to hide malicious activities and permit hackers to take control of 
victims. Several suggestions were issued to the Microsoft and research 
communities for developing future Windows operating systems. 
Shafi [10] surveyed security challenges in Cyber-Physical Systems 
(CPS). Agresti [11] proposed four distinct forces that will shape the 
future evolution of cybersecurity. Michael et al. [12] emphasized the 
importance of integrating legal and policy in cyber-preparedness. Eom 
et al. [13] developed an active cyber-attack model for accessing network 
vulnerabilities. Yu et al. [14] discussed models and countermeasures for 
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attacks that aim at Internet threat monitors. Wang et al. [15] focused 
on developing a mechanism to gather digital evidences that could be 
used to defend against cross-site script attack. Tejay et al. [16] analyzed 
performance of existing information system security countermeasures.

Leland et al. [17] presented a result of Ethernet traffic: “aggregating 
streams of such traffic typically intensifies the self-similarity instead of 
smoothing it”. Several other researchers adopted the concept of self-
similarity as well to propose their approaches for detecting cyber-
attacks such as traffic anomaly [18], intrusion [19], spam [20], and 
Distributed DoS (DDoS) attack [21].

In 1998, Defense Advanced Research Projects Agency (DARPA) 
and Air Force Research Lab (AFRL) funded a research in MIT Lincoln 
Laboratory to create large-scale intrusion detection database as the first 
standard set for measuring performance in terms of false alarm for each 
intrusion detection system under test. Most intrusion detection systems 
use signatures of known attacks to detect attacks. Many of these systems 
suffer high false alarm rates and poor detection of new attacks. Despite 
its increasing role in intrusion detection system, network traffic analysis 
approach remains premature: lack of effective malicious patterns and 
heavy increase of computational overhead [22,23].

Flooding-Based Denial Of Service Attack
An easy way to cause service denial to normal requests is by 

congesting the target links though high-rate unresponsive malicious 
flows. Flooding-based DoS attack [24-26] is the most prevalent among 
all cyber-attacks. It induces attack traffic from a sufficient number of 
compromised hosts to carry out congestion and cause most packets 
from normal flows to be dropped at the routers or service stacks. 
Most of the approaches in literatures for dealing with congestion are 
dedicated to providing fairness [27-31] to all active flows or rejecting 
malicious packets before they reach the service stacks [25-29]. Those 
approaches may not reduce impacts of malicious flows since they are 
sharing the same bandwidth with normal flows. 

The most common way to introduce flooding-based DoS attack is to 
disrupt connections between victims and legitimate users. For instance, 
in TCP SYN flooding attack [29], a large number of TCP SYN packets 
with spoofed source addresses are sending to service ports of the victim 
to request for establishing new connections. The victim responds those 
requests with SYN-ACK packets and waits for ACK packets from 
those requests. Since source addresses in those TCP SYN packets are 
spoofed and unreachable, these SYN-ACK packets will never reach 
their destinations. And then the victim is forced to retransmit SYN-
ACK packets for each request several times before giving up and could 
not establish regular connections for legitimate requests.

An alternative way to cause flooding-based DoS attack is to drain 
the bandwidth of all incident links of the victim to force the nearest 
router to drop most incoming packets of the victim. Attackers could do 
this by generating a heavy load of UDP-like unresponsive best-effort 
traffic (e.g., UDP, ICMP, TCP SYN, etc.) to exhaust bandwidth of the 
victim. For instance, attackers can broadcast ICMP Echo packets with 
victim’s IP address in the source field [28]. And then huge amount 
of ICMP Echo replies will be triggered and aim at the victim. These 
replies would overwhelm the victim’s network and consume most of its 
bandwidth and cause denial of service.

There are several tools (e.g., Shart, TFN, TFN2K, Trinoo, etc.) that 
could conduct flooding-based DoS attack easily and automatically 
by using the existing network protocols such as TCP, ICMP, UDP, or 
mixture of them. Those DoS attacks can either consume all connections 
or network bandwidth to cause denial of service. 

Analyzing Existing Network Traffic Traces
Existing network traffic traces provide clues for researchers to 

study scenarios and patterns of packets and connections. Researchers 
can simply derive statistical data regarding to packets, connections, and 
network resources for conducting complicated simulations.

In our research, we first gather knowledge from existing network 
traffic traces. 4 network traffic traces (Table 1) provided by the CAIDA 
(www.caida.org/data) have been analyzed.

They were all captured by the “Equinix San Jose A” monitoring 
point equipped with OC-192 optical link and dated from year 2009 to 
2011. Each of these traffic traces contains 60-second raw network data.

Packet level analysis

We extract packet-level information from those traffic traces listed 
in Table 1. The packet-level information includes time stamp, source IP 
address, destination IP address, protocol, packet size (with and without 
IP header), source port (application), destination port (application), 
and other information regarding to TCP, etc.

We group packets from every traffic trace into several different 
streams according to their protocols. In this paper, we differentiate 
packets into three categories: TCP packet, UDP packet, and Other 
packet. 

The packet-level information of the selected traffic traces is revealed 
in the Table 2 and 3. We observe that about 78% - 88% of network traffic 
is made by TCP packets, about 9% - 20% is made by UDP packets, and 
about 1% - 4% is made by other packets. We also observe that there 
are more than 85 other protocols (e.g., control messages, peer-to-peer 
protocol, other special protocols) implemented in the selected traffic 
traces.

These observations meet our expectation, since the majority of 
web applications (e.g., HTTP and HTTPS) are implemented upon 
TCP-related protocols [32,33]. Overall, we observe that TCP and UDP 
packets make up more than 94% of all packets.

Connection level analysis

To apply connection level analysis, we extract connection 
information from the first selected traffic trace (labeled 2009-01). In 

Traffic Trace File Name
2009-01 Equinox-sanjose.dirB.20090115-130000.UTC.canon.pcap
2009-02 Equinox-sanjose.dirB.20100121-130000.UTC.canon.pcap
2009-03 Equinox-sanjose.dirB.20110120-130000.UTC.canon.pcap
2009-04 Equinox-sanjose.dirB.20120119-130000.UTC.canon.pcap

Table 1: The Selected Traffic Traces.

2009-01 2010-01 2011-01 2012-01

TCP Packet 12261116 16456196 24846485 26542956
UDP Packet 1482744 1694519 6396887 3101842
Other Packet 522407 530530 505827 1159979

Table 2: Percentage of Packets in the Selected Traffic Traces.

2009-01 2010-01 2011-01 2012-01

TCP Packet 85.95% 88.09% 78.26% 86.16%
UDP Packet 10.39% 9.07% 20.15% 10.07%
Other Packet 3.66% 2.84% 1.59% 3.77%

Table 3: Composition of Packets in the Selected Traffic Traces.

http://www.caida.org/data
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here, we use a unique combination of source IP address, destination IP 
address, and Protocol to represent a “Connection”. 

Our results show that there are about 589,537 connections in this 
traffic trace. Among them, 46.62% are TCP connection, 39.95% are 
UDP connection, and 13.43% are others (Table 4).

We also calculate life (in seconds) and size (in number of packets) 
of every connection (Table 5 and 6) in this traffic trace. We observe that:

• Average life of TCP connections is longer than that of UDP and 
Other connections: As shown in the Table 5, there are about 
25.3% of TCP connections having life shorter than 1 second. 
However, the value is 77.93% for UDP connections and 68.53% 
for Other connections, respectively. Meanwhile, about 50% of 
TCP connections having life longer than 20 seconds, but only 
about 6% of UDP connections and 19% of Other connections 
having life longer than 20 seconds, respectively.

• Average size of TCP connections is larger than that of UDP 
and Other connections: As shown in Table 6, there are about 
76.66% of TCP connections having size smaller than 10 packets, 
but about 97.67% of UDP connections and 93.4% of other 
connections having size smaller than 10 packets, respectively.

Overall, we observe that UDP connections are much shorter in 
size and life than TCP connections. One interesting factor of UDP 
connections is: about 78% of UDP connections having life shorter than 
1 second and more than 97% of them having size less than 10 packets. 
This could be formed by large amount of short-life streaming video or 
audio data embedded in webpages.

Self similarity analysis

Another important factor of network traffic is heavy-tailed 
distribution [17]. We examine and study this factor of the selected 
network traffic traces.

Self similarity: Let ( : 0,1, 2,3...)tX X t =  represent a stationary 
stochastic process with mean X , variance 2S  and auto-correction 
function ( ), 0r k k ≥ . Let ( )( ) ( : 1, 2,3 )= = …mm

kX X k  for each m = 
1,2,3…, denote the new covariance stationary time series obtained by 
averaging the original series over non-overlapping blocks of size m. 

Thus ( )
1

1 ( ... ), 0m
k km m kmX X X k

m − += + + ≥ . The correction function of ( )m
kX  

is ( ) ( )mr k . X is said to be self-similar if ( ) ( )mr r k→ as →∞m .

Hurst parameter: A practical approach to present the scale of self-
similarity is to calculate the Hurst parameter H. A time series is self-
similar as long as its Hurst parameter is bounded between 0.5 and 1. 
The larger the value of H indicates the higher the scale of self-similarity. 
Several approaches have been applied to estimate Hurst parameter. In 
this paper, we apply re-scaled adjusted range statistic approach (R/S 
statistic) to evaluate Hurst parameter.

R/S statistic: 

Let 1 1
( ) 1 [ (0, ,..., ) min(0, ,... )]
( ) ( ) t t

R n Max W W W W
S n S n

= −  with 1( ... )t tW X X tX= + + − . 

Since 1
( )
( )

HR n a n
S n


as n →∞ , Hurst parameter H of X could be represented 

as the slop of ( ) .log
( )

R nE vs n
S n

 
 
 

.

Hurst parameter of the selected traffic traces: To study self-
similar characteristics of the select traffic traces, we apply R/S statistic 
to data streams that are extracted from them. We extract 4 data streams 
form each selected traffic trace. These data streams are labeled as: ALL-
stream (stream of all packets), TCP-stream (stream of TCP packets 
only), UDP-stream (stream of UDP packets only), and OTHER-stream 
(stream of all other packets). We evaluate Hurst parameters of these 
data streams. The results are in the Table 7.

We observe that TCP-stream is much more self-similar (i.e., Hurst 
parameter ~ 0.8) than UDP-stream and OTHER-stream. We also 
observe that the Hurst parameter of ALL-stream is almost equal to the 
Hurst Parameter of TCP-stream. This is because most packets in ALL-
stream are actually TCP packets.

Simulated Normal and Simulated Malicious Traffic
We have learned the following scenarios from the selected traffic 

traces discussed in the Section III and IV: (1) TCP packets contribute to 
about 85%, UDP packets contribute to about 10% and the combination 
of them contribute to about 95% of the network traffic, respectively; (2) 
TCP-stream is more self-similar than UDP-stream and Other-stream 
since it tends to be burstiness. (3) Other packets could be treated as 
UDP-like since characteristics of them are very similar to UDP; (4) 
Hurst parameter of All-stream is very similar to TCP-stream, since TCP 
packets make up most of the network traffic. 

To simplify this research without loss of generality we build a set 
of simulated network traffic: simulated normal traffic and simulated 
malicious traffic. 

• Simulated Normal Traffic: It is a combination of TCP and UDP 
traffic: 85% TCP packets and 15% UDP packets. This simulated 
normal traffic will behave self-similar with Hurst parameter 
about 0.85. It is about 50% of TCP flows will last longer than 10 

All Connection TCP Connection UDP Connection Other Connection

Number 595611 277697 237927 79987
Percentage 100% 46.62% 39.95% 13.43%

Table 4: Connection Number and Percentage in Traffic Trace 2009-01.

X TCP Connection UDP Connection Other Connection
1 25.03% 77.93% 68.53%

10 44.13% 89.88% 76.42%
20 50.19% 93.69% 80.69%
30 54.48% 96.05% 85.13%
40 86.43% 97.51% 90.05%
50 91.91% 98.66% 94.52%

Table 5: Connections with Life ≤ X Seconds in Traffic Trace 2009-01.

X TCP Connection UDP Connection Other Connection
10 76.66% 97.67% 93.40%
100 94.62% 99.65% 99.36%
200 96.90% 99.77% 99.73%
300 97.79% 99.82% 99.85%
400 98.29% 99.85% 99.89%
500 98.59% 99.87% 99.92%

Table 6: Connections with Size ≤ X Packets in Traffic Trace 2009-01.

Traffic Trace All-stream TCP-stream UDP-stream OTHER-stream
2009-01 0.84 0.84 0.55 0.55
2010-01 0.75 0.76 0.55 0.59
2011-01 0.81 0.81 0.62 0.73
2012-01 0.80 0.80 0.69 0.72

Table 7: Hurst Parameter of Four Different Streams in the Selected Traffic Traces.
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seconds. But only 10% of UDP flows could last longer than 10 
seconds. Meanwhile, this traffic is made up by 50% TCP flows 
and 50% UDP flows.

• Simulated Malicious Traffic: To mimic flooding-based DoS 
attack, we assume this simulated malicious traffic is made up by 
a large number of UDP-like flows with short flow life and small 
flow size. In order to confuse most intrusion detection systems, 
it is assumed average flow life of the simulated malicious 
traffic will be shorter than 1 second and average flow size will 
be smaller than 10 packets. To gain best result, this simulated 
malicious traffic will not behave self-similar and have Hurst 
parameter smaller than 0.5.

Fluid-Based Approach for Modeling Network Traffic in 
a Single Congested Network

To study network behavior without captures of actual network 
traffic, we develop a fluid-based approach adopting ideas from [24]. 
We model network traffic as a fluid and use Stochastic Differential 
Equations (SDE) to model TCP traffic. We also derive differential 
equations to describe Drop-Tail queuing policy.

As mentioned in the previous sections, TCP and UDP are the two 
major protocols used in the selected network traffic traces. Therefore, 
we consider only these two protocols in the fluid-based model. 
Performance measures used in this paper are throughput, goodput, and 
drop-rate: throughput represents sending rate (in bits per second) of 
the source node of a connection, drop-rate represents packet-loss rate 
(in bits per second) of a connection, and goodput represents receiving 
rate (in bits per second) of the destination node of a connection.

In our model, we consider network traffic in a link as fluid flows in 
a pipe. Therefore, for any given connection k at time t with throughput 

( )kA t  and drop-rate ( )kD t , its goodput ( )kGP t  can be represented as 
( )kA t - ( )kD t  That is

( ) ( ) ( )k k kGP t A t D t= −                                                 (1)

We first apply our model on a single congested network to study 
traffic behaviors. We than extend our study to a multi-congested 
network with complicated network traffic.

Single congested network

In this section, we assume there is only one bottleneck router in the 
network that causes packet losses. A network G is a directed graph, G 
= (V, E), where V={v1, v2, ..., vx}, denoting a set of routers in G, and E = 
{e1, e2, ..., ey}, denoting a set of links in G. We further assume that there 
are N UDP connections and M TCP connections passing through the 
only bottleneck vr in the network G during the monitoring period Ϩt.

To study traffic behaviors, we measure throughput of every 
connection before the bottleneck router vr and goodput of every 
connection after the bottleneck router vr, respectively.

Drop-Tail is the default and one of the most popular queuing 
management algorithms. In this paper, we implement Drop-Tail in all 
of our network models.

Throughput of any UDP connection i

Since UDP adopts best-effort fashion, throughput of an UDP 
connection could be constant during its life time. Thus the average 
inter-arrival time 

iudpτ (in seconds) of any UDP connection i could 

be represented as i

i

udp

udp

l
τ

, where 
iudpl is packet size (in bits) of UDP flow 

i. That is

=
τ

i
i

udp
udp

i

l
A

udp                      (2)

Throughput of any TCP connection j

To simplify network traffic without losing general characteristics 
of TCP protocol, we assume TCP implements an Additive Increase 
Multiplicative Decrease (AIMD) policy: when there is no congestion 
occurred, the policy of “Additive Increase” will increase the congestion 
window by 1 for every round trip time; when congestion detected, 
the policy of “Multiplicative Decrease” will decrease the congestion 
windows by half. Therefore, for any TCP connection j following the 
AIMD policy, its dynamic congestion window size can be represented 
by a SDE listed below.

( ) ( ) ( )( ) ( )11 1 1 ( 1)
2
−

= − − − −j
j j j

j

W t
W t I t t I t

R t
δ δ                    (3)

The first portion denotes that congestion window size jW  (in packets) 
of TCP connection j will increase by 1 for every round trip time jR  (in 
seconds) during a non-congestion period (i.e., ( )1 0− =jI t ). But the second 
portion denotes that congestion window size will become half of the size 

of its previous state (i.e., ( 1)
2

jW t − ), if there is at least one packet of TCP 

connection j (i.e., ( 1) 1jI t − = ) dropped during a congestion period.

In here, I is a packet loss indication function. I = 1 while at least a 
packet loss from TCP connection j is detected. Otherwise, I = 0.

At time t, TCP connection j will send out ( )jW t  packets. Thus 

throughput ( )jtcp tA  of TCP connection j can be written as 
( )

( )
jj tcp

j

W t l

R t

×
, 

where 
jtcpl  is packet size (in bits) of TCP flow j. That is

( )

( )

( )
j

j

j tcp
tcp t

j

W t l
A

R t

×
=

                                  (4)

Throughput of all connections

Intuitively, aggregate throughput ( )allA t  of all connections (i.e., 
N UDP connections + M TCP connections) passing through the 
bottleneck router vr, having service capacity 

rvC  and physical queue size 
max
rvQ , at time t can be represented as ( ) ( )

i ji N udp j M tcpA t A t∈ ∈+∑ ∑ , where ( )
iudpA t  and 

( )
jtcpA t  can be derived from Equation (2) and Equation (4), respectively. 

Therefore, we have 

( )
( )

( )∈ ∈

×
= +

τ
∑ ∑ ji

i

j tcpudp
all

udp ji N j M

W t ll
A t

R t
                   (5)

 In order to determine packet loss indication function I in the 
Equation (3), we introduce a drop probability function P. For any 
incoming packet z arriving the bottleneck vr at time t, let’s assume its 
drop probability is ( )zP t , where 0 ( ) 1zP t≤ ≤ . We will discuss this ( )zP t in 
the next section.

Drop probability of any incoming packet z

We consider two events that cause packet losses: (1) aggregate 
throughput ( )allA t  of all connections during the motoring period 
is larger than service capacity 

rvC  of the bottleneck router vr and (2) 
instantaneous queue size ( )

r

l
vQ t  at time t of the congested router is larger 

than its physical queue size max
rvQ .

Since characteristics of TCP connection and UDP connection 
are different, drop probability ( )zP t of any incoming  packet z passing 
through the bottleneck router vr with DT policy at time t could be 
determined by: (1) protocol of this packet (either TCP or UDP); (2) 
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aggregate throughput ( )allA t of all connections; (3) throughput (either 
( )

iudpA t  or ( )
jtcpA t  of UDP connection i or TCP connection j where this 

incoming packet z belongs; (4) service capacity 
rvC of the bottleneck 

router vr; and (5) instantaneous queue size ( )
r

l
vQ t  at time t and physical 

queue size max
rvQ  of the bottleneck router vr.

To discuss these conditions in detail, we consider the following four 
cases:

Case 1: ( )
rall vA t C≤ : Since aggregate throughput ( )allA t  is less than 

service capacity 
rvC  of the bottleneck router vr, there is no packet loss. 

Therefore, drop probability of incoming packet z at time t will be 0 (i.e., 
( ) 0zP t = ).

Case 2: ( )
rall vA t C> and max ( 1) ( ( ) )

r r r

l
v v all vQ Q t A t C tδ− − ≥ − × : Although 

aggregate throughput ( )allA t  is larger than service capacity 
rvC of the 

bottleneck router vr, drop probability ( )zP t of incoming packet z at time 
t is still 0 (i.e., ( ) 0zP t = ). This is because available queue space (i.e., 

max ( 1)
r r

l
v vQ Q t− − )

 
is still large enough to accommodate this incoming 

packet.

Case 3: ( )
rall vA t C> and max0 ( 1) ( ( ) )

r r r

l
v v all vQ Q t A t C tδ< − − < − × : In this 

case, for any incoming packet z at time t, its drop probability would 
be proportional to throughput of the connection where this packet 
belongs. Since z could be a TCP or UDP connection, we have to 
consider both cases. If packet z is an UDP packet and belongs to UDP 

connection i, its drop probability is proportional to ( )
( )

iudp

all

A t
A t

. However, 

if packet z is a TCP packet and belongs to TCP connection j, its drop 

probability is proportional to 
( )

( )
jtcp

all

A t

A t
. We introduce a random variable 

Ran_Var whose value is between 0 and 1 to determine whether 
the incoming packet z will be dropped or not. We assume ( ) 1zP t =  if 

( )
_ (1 )

( )
jtcp

all

A t
Ran Var

A t
≥ − . Otherwise ( ) 0zP t = .

Case 4: ( )
rall vA t C>  and max ( 1)

r r

l
v vQ Q t= − : Since aggregate 

throughput ( )allA t  is larger than service capacity 
rvC  of the bottleneck 

router vr and queue size of this router is full at time t-1, the incoming 
packet z will be dropped without doubt. Therefore, ( ) 1zP t = .

Packet loss indication function of any incoming packet z in 
TCP connection j

To determine packet loss indication function I of TCP connection j 
demonstrated in the Equation (3), we consider the following four cases 
for any incoming packet z belonging to TCP connection j.

Case 1: ( )
rall vA t C≤ : Since ( ) 0, ( 1) 0z jP t I t= + = .

Case 2: ( )
rall vA t C>  and max ( 1) ( ( ) )

r r r

l
v v all vQ Q t A t C tδ− − ≥ − × : Since 

( ) 0, ( 1) 0z jP t I t= + = .

Case 3: ( )
rall vA t C>  and max0 ( 1) ( ( ) )

r r r

l
v v all vQ Q t A t C tδ< − − < − × : We have 

( 1) 1jI t + = , if there exists any ( ) 1zP t = . Otherwise ( 1) 0jI t + = .

Case 4: ( )
rall vA t C>  and ( )= −

r r

max l
v vQ Q t : Since ( ) 1, ( 1) 1z jP t I t= + = .

Goodput of any connection k

As mentioned in the Equation (1), goodput represents receiving 
rate of the destination of a connection. For any given connection k, its 
goodput ( )kGP t  at time t can be represent as ( ) ( )k kA t D t− , where ( )kA t  
denotes throughput of connection k and ( )kD t  denotes drop rate of 
connection k.

In here, throughput ( )kA t could be estimated by using either 

Equation (2) or Equation (4). Drop-rate ( )kD t of connection k could be 
estimated by determining drop probability of every incoming packet of 
this connection during time t. Therefore, goodput ( )kGP t  of connection 
k at time t could be measured by using models we addressed in the 
previous sections.

Modeling Simulated Network Traffic
In this section, we demonstrate various simulated network traffic 

according to the knowledge learned from the selected raw network 
traffic traces and models developed from our fluid-based approach.

Modeling simulated normal traffic with single TCP and UDP 
connection

To understand TCP and UDP involved in the simulated normal 
and malicious traffic, we design a simple simulation to study their 
characteristics.

At first, we simulate dynamical change of congestion window size 
and goodput of a TCP connection. The parameters involve in this 
simulation are: physical queue size of the congested router is 32,000 
bits; minimum window size of TCP is 1 packet; maximum window size 
of TCP is 80 packets; average TCP round trip time is 20 ms; service 
capacity of the congested router is 10 Mbps; and TCP packet size is 
8,000 bits. 

As shown in the Figure 1, congestion window size of this TCP 
connection is fluctuated between 15 and 31 packets after the first 
packet loss detected. Meanwhile, we also discover goodput of this TCP 
connection is fluctuated as well (Figure 2). These results indicate that 
the TCP AIMD policy adopted in our model actively responses to 
packet losses from this TCP connection.

We then add an UDP connection into the same simulation to 
study the competition between TCP and UDP. We designate a reserved 
service capacity of the congested router to this UDP connection and 
then capture its goodput vs. time. The additional parameters needed 
for this simulation are: UDP packet size is 1,600 bits and throughput 
of this UDP connection is fixed to about 15% of the service capacity of 
the congested router. As we expected, goodput of the TCP connection 
will be reduced since it responds to network congestion. However, the 
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Figure 1: Congestion Window Size of a TCP Connection vs. Time
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UDP connection keeps its sending-rate steadily (Figure 3). Therefore, 
we see a potential that how a single malicious activity can gain largest 
advantage against normal network activities: using high-rate non-
responsiveness packets to flood targeted victims. 

Modeling simulated normal traffic with multiple TCP and 
UDP connections

As we observed in the previous sections, traffic trace 2009-01 has 
about 590,000 connections within its 60 second monitoring period. 
Among these connections, 47% are TCP connection, 40% are UDP 
connection, and 13% are other connections. We also observe that about 
51% of them having connection life shorter than 1 second and about 
87% of them having connection size less than 10 packets.

These data demonstrate a fact that most connections passing 
through the monitoring point are very short and fragile and even TCP 
connection would act like an UDP one and will not perform congestion 
control as well as it is designed. Therefore, we could see a large amount 
of burstiness across 60-second monitoring period (Figure 4). This fact 
explains why TCP SYN attack could bring much more damages than we 
expected. It could not only hijack services for normal requests, but also 
deprive them of network bandwidth.

To model multiple connections with various sizes and lives, we 
introduce three additional variables (start_time, end_time, and size) to 

our model to represent start time, end time, and size of a connection. 
We use life and size distribution learned from traffic trace 2009-01 
to mimic start_time, end_time, and size of every connection. As 
shown in the Figure 5 and 6, life distribution of traffic trace 2009-01 
demonstrate a Power Law-like characteristic: exponential decrease with 
long tail; and size distribution of the same traffic trace demonstrate a 
Poisson-like characteristic: exponential decrease. Therefore, these two 
characteristics would be added into our model to produce those three 
additional parameters for every connection.
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Figure 2: Goodput of a TCP Connection vs. time.
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Figure 3: Goodput of a TCP Connection and an UDP Connection vs. Time.
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Figure 4: Heavy Burstiness in Traffic Trace 2009-01.
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Figure 5: Life Distribution of Traffic Trace 2009-01.
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Modeling simulated malicious traffic

In this paper, we assume malicious traffic is derived from a certain 
amount of malicious UDP-like connections with short life and small 
size and aiming at some predefined network victims. To mimic 
flooding-based DoS attack, we introduce a simulated malicious traffic 
which is made up by a number of UDP-like flows with short flow life 
and small flow size. We assume their average life will be shorter than 1 
second and their average size will be smaller than 10 packets as well. To 
exhaust bandwidth of the victim, this simulated malicious traffic will 
not behave self-similar and have Hurst parameter smaller than 0.5. 

Our approach is based on an observation that malicious flooding-
based DoS network activities are not isolated, but related as different 
stages of a series of malicious attacks. Intuitively, their traces could be 
caught even though they are carefully hidden behind normal activities 
and have forged footprints.

To model simulated malicious traffic, we introduce a large amount 
of UDP-like best-effort packets as an aggregate UDP connection with 
throughput fixed to about 30% of the service capacity into the monitoring 
point. Other simulation conditions are the same as modeling simulated 
normal traffic with single TCP and UDP connection. We observe that 
goodput of the simulated normal traffic decreased as the number of 
simulated malicious packet increased (Figure 7).

Conclusion and Future Work
In this paper, we (1) analyze several selected traffic traces; (2) 

introduce a set of simulated normal traffic and simulated malicious 
traffic according to the knowledge learned from the selected traffic 
traces; and (3) develop a fluid-based model to study performance of 
a single congested network under simulated normal traffic and the 
simulated malicious traffic. In the future, we will develop more network 
models (e.g., a network with multiple congestion points) to study 
performance of the simulated traffic. We will also extend our network 
model and simulated traffic to study other malicious activities and to 
evaluate their influences as well.

References

1. Albert R, Jeong H, Barabasi A-L (1999) Diameter of the World-Wide Web. 
Nature 401: 130-131. 

2. Hätönen J (2011) The economic impact of fixed and mobile high-speed 
networks. EIB Papers 16: 30-59. 

3. Greenstein S, McDevitt R (2011) The broadband bonus: estimating broadband 
Internet’s economic value. Telecommunications Policy 35: 617-632. 

4. Rausas MP, Manyika J, Hazan E, Bughin J, Chui M, et al. (2011) Internet 
matters: the net’s sweeping impact on growth, jobs, and prosperity. McKinsey 
Global Institute. 

5. McAfee Lab (2012) McAfee Threats Reports: First Quarter 2012. 

6. Industrial Control Systems Cyber Emergency Response Team Control Systems 
Security Program (2011) ICS-CERT incident response summary report 2009-
2011. 

7. Ponemon Institute (2011) Second annual cost of cyber crime study. 

8. Passeri P (2013) Cyber attack statistics. 

9. Lobo D, Watters P, Wu X-W, Sun L (2010) Windows rootkits: attacks and 
countermeasures. Proceeding of 2010 Second Cybercrime and Trustworthy 
Computing Workshop. 

10. Shafi Q (2012) Cyber physical systems security: a brief survey. Proceeding of 
12th International Conference on Computational Science and Its Applications. 

11. Agresti W (2010) The four forces shaping cybersecurity. Computer 43: 101-104. 

12. Michael J, Sarkesain J, Wingfield T, Dementies G, de Sousa GNB (2010) 
Integrating legal and policy factors in cyberpreparedness. Computer 43: 90-92. 

13. Eom JH, Han YJ, Park SH, Chung TM (2008) Active cyber attack model for 
network system’s vulnerability assessment. Proceeding of 2008 International 
Conference on Information Science and Security.

14. Yu W, Zhang N, Fu X, Battati R, Zhao W (2010) Localization attacks to Internet 
threat monitors: modeling and countermeasures. IEEE Transactions on 
Computers 59: 1655-1668. 

15. Wang SJ, Chang YH, Chiang WY, Juang WS (2007) Integrations in cross-site 
script on Web-systems gathering digital evidence against cyber-intrusions. 
Proceeding of Future Generation Communication and Networking (FGCN 
2007). 

16. Tejay G, Zadig S (2012) Investigating the effectiveness of IS security 
countermeasures towards cyber attack deterrence. Proceeding of 45th Hawaii 
International Conference on System Sciences. 

17. Leland W, Taqqu M,Willinger W, Wilson D (1994) On the self-similar nature of 
Ethernet traffic. IEEE/ACM Transactions on Networking 2: 1-15. 

18. Cheng X, Xie K, Wang D (2009) Network traffic anomaly detection based 
on self-similarity using HHT and wavelet transform. Proceeding of Fifth 
International Conference of Information Assurance and Security. 

19. Allen W, Marin G (2003) On the self-similarity of synthetic traffic for the 
evaluation of intrusion detection system. Proceedings of 2003 Symposium on 
Applications and the Internet.  

20. Lee J, Jeong HD, McNicke D, Pawlikowshi K (2011) Self-similar properties of 
spam. Proceeding of Fifth International Conference on Innovative Mobile and 
Internet Services in Ubiquitous Computing. 

21. Zhang S, Zhang Q, Pan X, and Zhu X (2011) Detection of low-rate DDoS attack 
based on self-similarity. Proceeding of second International Workshop on 
Education Technology and Computer Science. 

22. Lippmann R, Cunningham R (2000) Improving intrusion detection performance 
using keyword selection and neural networks. Computer Networks 34: 597-
603. 

23. Peddabachigari S, Abraham A, Grosan C, Thomas J (2007) Modeling intrusion 
detection system using hybrid intelligent systems. Journal of Network and 
Computer Applications 30: 114-132. 

24. Change RKC (2002) Defending against flooding-based distributed denial-of-
service attacks: a tutorial. IEEE Communication Magazine 40: 42-51. 

25. Piskozub A (2002) Denial of service and distributed denial of service attacks. 
Proceedings of the International Conference on Modern Problems of Radio 
Engineering, Telecommunications and Computer Science. 

26. CERT Coordination Center (2001) Denial of service attacks. 

0 

2 

4 

6 

8 

10 

12 

0 2 4 6 8 10 

G
oo

dp
ut

(M
bp

s)
 

Time (Seconds) 

TCP UDP 

Figure 7: Goodput of a TCP Connection and an Aggregate UDP Connection 
vs. Time.

http://www.nature.com/nature/journal/v401/n6749/full/401130a0.html
http://www.nature.com/nature/journal/v401/n6749/full/401130a0.html
http://www.eib.org/attachments/general/events/luxembourg_27102011_08_hatonen.pdf
http://www.eib.org/attachments/general/events/luxembourg_27102011_08_hatonen.pdf
http://people.stern.nyu.edu/lwhite/f&m.assignments.2012/f&m.presentationmaterials/Broadband/The Broadband Bonus - Estimating Broadband Internet%27s Economic Value.pdf
http://people.stern.nyu.edu/lwhite/f&m.assignments.2012/f&m.presentationmaterials/Broadband/The Broadband Bonus - Estimating Broadband Internet%27s Economic Value.pdf
http://www.mckinsey.com/insights/high_tech_telecoms_internet/internet_matters
http://www.mckinsey.com/insights/high_tech_telecoms_internet/internet_matters
http://www.mckinsey.com/insights/high_tech_telecoms_internet/internet_matters
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf
E:\TotalJournals\JEES & JECEC\JEES-Volume2\Volume2.2\JEES-2.2_W\JECEC-13-8688-(110)\12801-JECEC-13-8688 -q1-approved\[1]
E:\TotalJournals\JEES & JECEC\JEES-Volume2\Volume2.2\JEES-2.2_W\JECEC-13-8688-(110)\12801-JECEC-13-8688 -q1-approved\[1]
E:\TotalJournals\JEES & JECEC\JEES-Volume2\Volume2.2\JEES-2.2_W\JECEC-13-8688-(110)\12801-JECEC-13-8688 -q1-approved\[1]
http://www.ponemon.org/local/upload/file/2011_2nd_Annual_Cost_of_Cyber_Crime_Study .pdf
http://hackmageddon.com/tag/cyber-attack-statistics/
http://www98.griffith.edu.au/dspace/handle/10072/37830
http://www98.griffith.edu.au/dspace/handle/10072/37830
http://www98.griffith.edu.au/dspace/handle/10072/37830
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6257627
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6257627
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5410722&contentType=Journals+%26+Magazines
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5445177&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5445177
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5445177&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5445177
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4438226&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4438194%2F4438195%2F04438226.pdf%3Farnumber%3D4438226
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4438226&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4438194%2F4438195%2F04438226.pdf%3Farnumber%3D4438226
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4438226&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4438194%2F4438195%2F04438226.pdf%3Farnumber%3D4438226
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5453347&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5453347
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5453347&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5453347
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5453347&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5453347
http://dl.acm.org/citation.cfm?id=1333873.1334047
http://dl.acm.org/citation.cfm?id=1333873.1334047
http://dl.acm.org/citation.cfm?id=1333873.1334047
http://dl.acm.org/citation.cfm?id=1333873.1334047
http://dl.acm.org/citation.cfm?id=2117107
http://dl.acm.org/citation.cfm?id=2117107
http://dl.acm.org/citation.cfm?id=2117107
http://dl.acm.org/citation.cfm?id=178222
http://dl.acm.org/citation.cfm?id=178222
http://dl.acm.org/citation.cfm?id=1634672
http://dl.acm.org/citation.cfm?id=1634672
http://dl.acm.org/citation.cfm?id=1634672
http://dl.acm.org/citation.cfm?id=829235
http://dl.acm.org/citation.cfm?id=829235
http://dl.acm.org/citation.cfm?id=829235
http://dl.acm.org/citation.cfm?id=2059030
http://dl.acm.org/citation.cfm?id=2059030
http://dl.acm.org/citation.cfm?id=2059030
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5458957&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5458957
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5458957&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5458957
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5458957&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5458957
http://www.sciencedirect.com/science/article/pii/S1389128600001407
http://www.sciencedirect.com/science/article/pii/S1389128600001407
http://www.sciencedirect.com/science/article/pii/S1389128600001407
http://www.sciencedirect.com/science/article/pii/S1084804505000445
http://www.sciencedirect.com/science/article/pii/S1084804505000445
http://www.sciencedirect.com/science/article/pii/S1084804505000445
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1039856&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1039856&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D1015977%26userType%3Dinst&denyReason=-134&arnumber=1015977&productsMatched=null&userType=inst
http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D1015977%26userType%3Dinst&denyReason=-134&arnumber=1015977&productsMatched=null&userType=inst
http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D1015977%26userType%3Dinst&denyReason=-134&arnumber=1015977&productsMatched=null&userType=inst
http://www.cert.org/tech tips/denial of service.html


Citation: Hu YH (2013) A Fluid-Based Approach for Modeling Network Activities. J Electr Electron Syst 2: 110. doi:10.4172/2332-0796.1000110

Page 8 of 8

Volume 2 • Issue 2 • 1000110
J Electr Electron Syst
ISSN: 2332-0796 JEES an open access journal

27. Floyd, S, Jacobson V (1993) Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking 1: 397-413. 

28. Demers A, Keshav S, Shenkar S (1990) Analysis and simulation of a fair
queueing algorithm. Proceedings of SIGCOMM ‘89 on Communications
Architectures & Protocols. 

29. Shreedhar M, Verghese G (1996) Efficient fair queueing using deficit round 
robin. IEEE/ACM Transactions on Networking 4: 375-385. 

30. Lin D, Morris, R (1997) Dynamics of random early detection. Proceedings of

SIGCOMM on Applications, Technologies, Architectures, and Protocols for 
Computer Communication. 

31. Ott TJ, Lakshman TV, Wong, LH (1999) SRED: stabilized RED. Proceedings 
of IEEE INFOCOM’99. 

32. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, et al. (1999) Hypertext
Transfer Protocol -- HTTP/1.1. Network Working Group, RFC 2616. 

33. Rescorla E (2000) HTTP Over TLS. Network Working Group, RFC 2818.

http://dl.acm.org/citation.cfm?id=169935
http://dl.acm.org/citation.cfm?id=169935
http://dl.acm.org/citation.cfm?id=75246.75248&coll=DL&dl=ACM&CFID=352703183&CFTOKEN=15556147
http://dl.acm.org/citation.cfm?id=75246.75248&coll=DL&dl=ACM&CFID=352703183&CFTOKEN=15556147
http://dl.acm.org/citation.cfm?id=75246.75248&coll=DL&dl=ACM&CFID=352703183&CFTOKEN=15556147
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=502236&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=502236&abstractAccess=no&userType=inst
http://dl.acm.org/citation.cfm?id=263154
http://dl.acm.org/citation.cfm?id=263154
http://dl.acm.org/citation.cfm?id=263154
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=752153&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=752153&abstractAccess=no&userType=inst
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Work 
	Flooding-Based Denial Of Service Attack 
	Analyzing Existing Network Traffic Traces 
	Packet level analysis 
	Connection level analysis 
	Self similarity analysis 

	Simulated Normal and Simulated Malicious Traffic 
	Fluid-Based Approach for Modeling Network Traffic in a Single Congested Network 
	Single congested network 
	Throughput of any UDP connection i 
	Throughput of any TCP connection j 
	Throughput of all connections 
	Drop probability of any incoming packet z 
	Packet loss indication functionof any incoming packet z in TCP connection j 
	Goodput of any connection k 

	Modeling Simulated Network Traffic 
	Modeling simulated normal traffic with single TCP and UDP connection 
	Modeling simulated normal traffic with multiple TCP and UDP connections 
	Modeling simulated malicious traffic 

	Conclusion and Future Work 
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	References



