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1. Introduction
Stem cells need little conceptual background as proliferation

and differentiation processes which are responsible for repairing and 
replacing damage tissues are still undefined. Clinical studies found that 
after receiving the molecular stimuli such as biological injuries, stem 
cells undergo activation, proliferation and differentiation processes for 
repopulating the injured area in order to compensate the losses [1]. 
Even, in the unperturbed situation, damage to proliferation-able cell 
during transition from the proliferation to differentiation stage also 
needs to be compensated for the sake of continuation of this (cyclic) 
process [1,2]. However, this process is invariably heterogeneous, and 
the capacity as well as potential of this process is largely dependent on 
the cell types. Furthermore, cells from the surrounding subpopulation 
are also responsible for this regeneration process; and given their 
unique regenerative dynamics, stem cells improve the capability to 
treat debilitating diseases like cancer, diabetes, heart and muscular 
dystrophy.

Multicellular organisms in human cells have inherent ability to 
replicate under its respective regulatory constraints in order to meet 
the requirements of a normal healing process [2,3]. According to the 
clinical studies, cells can be categorized in several subclasses including 
quiescent cells, stem cells, progenitor cells, terminally differentiated 
cells and dead cells (apoptosis). In this present context, stem cell is 
considered as proliferation-able as long as it has the capability of 
self-renewal or the property of growing through the symmetrical or 
asymmetrical cell division process [4-9]. In contrast, differentiated cells 
may or may not have the cell division potential through the symmetrical 
or asymmetrical cell division, while dead cell is the disappearance 
of the cell from the cell life cycle. Conceptually, the biology of cell 
proliferation, differentiation and apoptosis in cell culture is remarkably 
similar for all cell types; however, overall process can be influenced by 
their respective unique regulatory and environmental factors.

Fundamentally, proliferation is the process which increases the cell 

volume or mass. It is a time variant, heterogeneous and random process; 
where, even some differentiated cells have the probability to proliferate 
and increases the cell population (cell quantity) by symmetric and 
asymmetric cell division processes; while others lose that potential. 
Furthermore, rate of proliferation is extremely dependent on the 
number of initial cell populations, rate of cell division, growth factors 
and their proliferative capability [2,3]. However, cell populations lose 
these properties when they reach at the end of their life cycle known as 
terminal differentiation or disappearance (cell death or apoptosis) [3]. 
Differentiation, differential gene expression-a change in the set of genes, 
starts when the growing cells follow the fertilization and undergoes 
phenotypic and morphological changes to a complex tissue specific 
cell types. This process is relatively slow and partially or completely 
ceases the cell’s ability to further proliferate (terminal differentiation), 
and may also be responsible to perform specialized function for a 
long period of time. While, apoptosis, cell death or disappearance, is 
a necessary mechanism in order to ensure homeostasis of all tissues. It 
is basically a complement of growth process, which needs to be highly 
regulated because of the extended cell survival. This is the coordinated 
function of tissue and morphogenesis, which is responsible to create a 
permissible platform in case of genetic instability and accumulation of 
mutations.

The main focal point of this proposed quantification and estimation 
processes is to design a discrete engineering architecture for the 
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Abstract
The main challenge of stem cell biology is to characterize proliferation and differentiation processes; since, 

very little is known regarding the molecular stimuli responsible for their regulatory mechanisms. On the other hand, 
comprehensive molecular analysis is yet too complex to perform intuitively. Therefore, computational models are 
essential for the optimization of clinical understanding in order to enhance the therapeutic process.

In this article, a discrete-time convergence model for stem cell growth process based on clinical observations 
and engineering predictions has been proposed. Typically, stem cell populations are in quiescent; but in response to 
molecular stimuli they become activated and proliferate, and undergo divisional cycle before experiencing the terminal 
differentiation or disappearance process. The objective of this paper is to present a computational analysis of stem cell 
proliferation process, and standardize a model which converges with the experimental hypothesis. More importantly, it 
has also been shown that, inherent homogeneous and heterogeneous properties of stem cell populations are also the 
necessary conditions for this convergent theory. In addition, Kalman filter has been used for estimating the unknowns 
as well as effciency of the proposed model. Simulation results based on synthetic data are presented to illustrate the 
performance of the proposed technique.
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Section 3 presents formulation of computational model, quantitative 
analysis, transition properties and convergence of the model. Section 4 
carries out an estimation technique using Kalman filter. Simulations and 
result are presented in Section 5. Finally, conclusions are included in 
Section 6.

2. Computational Cell Architecture
Satellite cells are a pole of quiescent and undifferentiated 

mononucleated myogenic cells, located at the periphery of terminally 
differentiated and multinucleated muscle fibers. Like other stem cells, 
these tissue specific progenitor cells have the remarkable proliferation 
and self-renewal capabilities. However, these cell populations are 
transcriptionally inactive, but activate and express molecular markers 
of the MyoD or myf5 families in response to injuries [4] and play a 
vital role in the maintenance and the regeneration of skeletal muscle. 
Furthermore, satellite cells not only have remarkable ability for muscle 
regeneration and remodeling processes, but also play vital roles in 
the muscular therapeutic process in order to treat the deadly diseases 
such as cachexia or muscular dystrophy. In addition, myosatellite cell 
numbers and its distribution between the muscle groups are dependent 
on the age and type of the muscle fibers [5]. Studies found that the 
molecular phenotypes responsible for these processes could express 
distinct developmental commitment due to the heterogeneity in the 
satellite cell contents, and because of this property even one tissue vary 
in their fundamental cell types [2]. A complete life cycle of the satellite 
cell following a myotrauma is presented in figure 1.

The in vitro experiment for satellite cell is designed to analyze the 
proliferation-able cell populations in temporal and spatial domains. 
Proposed model has assumed three types of cell populations: stem cell 
(or progenitor cells) with the finite proliferation-able or self-renewal 
capability; differentiated cells, which have very limited proliferative 
capability and lose their propagative properties through terminal 
differentiation process; and dead cells, which are basically considered 
as the disappeared cells from the cell cycle. All transition and 
branching processes are time variant and heterogeneous. In addition, 
the regulatory mechanisms behind the decision for these transition or 
branching processes are random in nature. The model also predicts a 
high degree of variability in the molecular compositions and the time 
required to complete the cycle. Computational analysis of these three 
classes of cells is presented in the following subsections.

2.1 Proliferation process

The importance of the cell growth and proliferation are accelerated 

proliferative cell populations which converges with the experimental 
hypothesis. Furthermore, the formulation of this model is based on 
the observations of cell growth, differentiation and apoptosis in the 
cell culture media (i.e., in vitro) [2]. The goal of this paper is also to 
generalize a novel discrete time convergence computational theory, 
which would be able to execute and analyze the characteristics of stem 
cell populations in temporal domain. More importantly, the foundation 
of this generalization has been compiled under the assumption that 
proliferation, differentiation and apoptosis processes are exceedingly 
similar for all cell types. However, they are influenced by the respective 
cell properties. On the other hand, cell populations under study 
exhibits inherent heterogeneous property as a whole and homogeneous 
during their transition process. In addition, they have finite probability 
and completed their life cycle through the terminally differentiation or 
disappearance process. The main biomedical challenge of this paper 
is to model the parameters which are responsible for the stimulation 
of the respective cell properties including the unique regulatory, 
environmental, permissive and repressive factors. Other challenges 
associated with this research are the integration of the cell biology with 
the engineering paradigms as well as finding the biological resources 
and previous work hypothesis.

Furthermore, muscle stem cell also known as satellite cell has been 
used for the model study. Satellite cells are small cell populations, 
initially identified in 1961, residing in indentations between the 
sarcolemma and the basement membrane [10]. The regeneration 
process of skeletal muscle following a physiological demand is largely 
dependent on muscle stem cells. Studies also found that, this cell 
population has remarkable capability to adapt with the physiological 
injuries including growth and training [1]. Typically, muscle stem 
cell populations are quiescent and remain in nonproliferation-
able and nondifferentiation-able states. However, in response to 
mechanical stimuli such as myotrauma, muscle stem cells become 
activated and proliferate as muscle myoblasts, also known as myogenic 
markers, before undergoing myogenic differentiations (or terminally 
differentiations) for augmenting the existing muscle fibers or forming 
new fibers [11]. This process is invariably heterogeneous due to 
the diverse nature of intracellular interactions [12]. Clinicians and 
biologists are trying to understand the dynamics and complexities of 
their behaviors based on the clinical and experimental observations. 
Despite of many researches, generalization of these regulatory factors 
as well as the overall understanding of how these function to contribute 
the sequential events in the muscular development are still unclear. In 
addition, scope for the intuitive analysis of its nature is very complex 
and infeasible. Therefore, computational model becomes a crucial part 
for satellite cell biology.

Motivation of this paper is its comprehensive quantitative analysis 
of proliferation-able stem cell populations and its convergence 
theory; however, this phenomenon can also be implementable for 
cell differentiation process. More importantly, the execution of the 
computational process is based on the detection, prediction and 
estimation theory and a Kalman filter has been used to formulate 
this analytical architecture as well as evaluation of its performance. In 
addition, stem cell biology is a promising area of clinical inquiry where 
most of the fundamental concepts are still undefined [1]. Therefore, 
this paradigm could be used as a new predicted microscope for the 
researchers to investigate the quantitative theory in order to characterize 
the growth process; since, almost none of the computational models 
have yet been developed.

Remainder of the paper is organized as follows. Section 2 studies 
fundamentals of computational theory for stem cell architecture. 
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Figure 1: Myosatellite cell-life cycle [6].
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not only for its crucial role in tissue (muscle) therapeutic process upon 
acute injury but also its ability to overuse. In fact, these are the most 
unique molecular properties of tissue or cell biology. This process is 
dependent on time as well as the quantity of the initial cell populations 
and their proliferation-able capabilities. The cellular growth rate is also 
a function of different other variables [13] including age, environmental 
factors and oxygen concentrations.

Now, consider X(t), if it represents total number of proliferation-
able cell populations at time t; then standard experimental expression 
for cell division (or proliferative cell growth) X(t) can be presented:

X (t)=2X (t-1)δ(γ)-[D(t)+Q(t)]γ(t)                                                   (1)

where,

t=1, 2 . . . T; X (t)≈0 for large value of T and

X (0)=initial cell populations

D(t)=differentiated cells

Q(t)=disappearance or dead cells

γ(t) is the biological factor, has the influenced on proliferation 
process

δ(γmax)=0 and usually occur for large value of T.

Furthermore, when biological factor γ has no influence on the cell 
division process then the contribution due to the second part of right 
hand side is negligible and vice versa.

Estimate of X (t) at time t=T can also be formulated:

 (t)=2T −1X (0)+η(t)                                                                               (2)

such that,

X (t)− (t)=0                                                                                            

where η is the effect on estimation process due to the molecular 
heterogeneity or biological factors; and 2(T−1) is the exponential doubling 
factor.

2.2 Differentiation process

In the cellular biology, cessation of proliferation capability can 
be termed as differentiation. Basically, it is a process through which 
a genetic cell transforms into a tissue specific cell in response to a 
specific intra and extra cellular signal. Myogenic cells are able to 
differentiate followed by fused to existing muscle fibers or form new 
fibers. This myogenic differentiation process is closely attached with 
the basic helix-loop-helix (bHLH) transcription factors [1,2]. On the 
other hand, myogenic regulatory factors (MRF4) appeared to function 
in acceleration or activation of muscle differentiation. Furthermore, 
differentiation process can be classified as a partial differentiation 
(DP), which has the potential to become a proliferation-able cell; and 
as a terminally differentiation (D) or end cell, which is essentially 
an irreversible process. The relationship between proliferation and 
differentiation processes for the muscle stem cells can be conceptualized 
from the schematic diagram presented in figure 2.

Now, terminally differentiation process D (t) at time t can be stated:

D(X, t)=(1−α)X (t)+η(t)                                                                      (3)

and

α=λ+β

0 ≤ λ ≤ 1

0 ≤ β ≤ 1

0 ≤ λ+β ≤ 1                                                                                            (4) 

αmax=1 and

αmin=0

where λ and β are proportionality factors for differentiated and 
dead cells respectively and inversely proportional to time t. These 
factors are influenced by η and also dependent on the number of cell 
populations at t.

Cell death or disappearance process: Like growth and 
differentiation, cell disappearance or cell death Q(X,t) is influenced by 
several factors including age, environment and heterogeneity in cell 
populations. Basically, this process is considered as a departure of cells 
from the cell life cycle due to apoptosis, narcosis or return to quiescence 
or stems stage [2]. However, according to the proposed model, this 
transition process is also considered as a cessation of cell proliferation-
able capability. Moreover, this transformation process is also a function 
of time t and dependent on λ and β as stated in eq. (4).  Importantly, 
equations (3) and (4) can also be used to characterize and quantify the 
disappearance process of the cell populations.

2.3 Decay process

According to the proposed computational model, total cessation of 
the cell proliferation-able property due to the cell differentiation and 
cell disappearance can be termed as decay process. This irreversible 
process is complementary of growth process and accelerated by the 
same molecular events as stated for the cell growth. For example, if the 
cell populations X (t) can be considered as the function of time t; then 
using eq. (2), X (t) can be restated [14]:

X (t)=X (0)2−b(t−1)+η(t)                                                                                  (5)

where t=1, 2 . . . T. 

Now, the rate of decay:

( ) ( ){ }( ) ( )          ηη= − + +
dx t d tb X t t

dt dt
                                 (6)

                 

where b is a proportionality constant and (-) sign indicates that 
the slope of X (t) against t is essentially a negative quantity since, cell 
population decreases with time t; and the parameter η(t) refers to the 
heterogeneity in decay process and has the same influence on cell 
populations as stated in eq. (2). Now, for some suitable values of η(t) as 
well as for the homogeneous cell populations, the rate of decay stated in 
eq. (6) can be restated:
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Figure 2: Muscle regeneration-proliferation and differentiation process [6].
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( ) ( )= −
dX t bX t

dt
                                                                              (7)

According to (7), it can be concluded that the rate of decay at 
particular time is proportional to the cell populations at that time. 
Therefore, from the outcomes of this equation, it is apparent that, cell 
populations at certain time t can also be predictable.

2.4 Stochastic cell theory

The multi-branching stochastic models for the single stem cell 
populations in spatial-temporal domain can be presented as shown 
in figure 3, however for the simplicity of this process, some branching 
parts are excluded from the figure 3 [12,16,17]. According to figure 3a, a 
proliferation-able stem cell is divided into two or one proliferation-able 
cell with the probability of p2 and p1 respectively. In the case of figure 3b, 
a proliferation-able stem cell is producing two or no proliferation-able 
cells with the probability of p2 and po respectively. In figure 3c, cell has the 
capability to produce one proliferative or two terminally differentiated 
cells with the probability of p1 and po respectively. In figure 3d, one 
proliferationable cell is divided into two proliferation-able cells or one 
partially differentiated and one terminally differentiated cells or two 
terminally differentiated cells or one terminally differentiated and one 
dead cell with the probability of p2, p1 and po respectively. In figure 
3e, one proliferative cell is producing one proliferative cell and one 
partially differentiated cell or two terminally differentiated cells or one 
partially differentiated and one terminally differentiated cells with the 
probability of p2, po and p1 respectively. Finally, figure 3f states that one 
proliferation-able cell can transform into a terminally differentiated cell 
without participating in any divisional process. The ability of a partially 
differentiated cell to become a proliferation-able cell is also apparent 
from figure 3e. It is also worthy to mention that this branching process 
is homogeneous at a particular period of time and heterogeneous as a 
whole.

2.5 In vitro cellular technology

In this model, the proliferative capability of the cell population 
is characterized based on the in vitro experimental design, a design 
technology used in the laboratory for cell research instead of inside 
the body. Typically, growing new types of cells in the laboratory and 
transplanting them into the body for treating hereditary diseases is 
known as the cell therapy. The cell growing technology in the laboratory 
is known as the cell culture, where cells have the limited ability to exhibit 
their molecular properties due to the lack of permissive and repressive 
factors as compared to in vivo [1,2].

Cell culture: The observations of desired molecular markers under 
the influence of induced force are one of the main objectives of the cell 
culture. The overall observation period for the satellite proliferation-
able cell populations in the cell culture media usually takes 10-12 days 
[2]. Typically, this time period is also considered as a cessation time 
of the cells proliferative capabilities or the transformation time from 
the proliferation-able cell state to the terminally differentiated state. As 
the density of the cell increases with time, confluency of cell media is 
researched (i.e., when all of the potential cell growth areas are occupied). 
Confluence is highly unexpected, since at this stage cells have the limited 
capacity to grow and eventually lose their phenotypes with a higher 
possibility to die. To overcome this challenge, certain portion of the 
cell populations are removed frequently over the period of time from 
the primary culture media and re-plated into the new culture media, 
known as the subculture. Furthermore, the level of stimulation ability 
of the induced factors for the cell growing process is dependent on the 

age and the cell proliferation-able capability of the cell populations in 
the culture media. Therefore, these two factors also play an important 
role for the cells to be a potential candidate for the cell culture.

Differences between in vitro and in vivo: Basically, in vitro is a 
dissociation of cells from the 3-dimensional geometrical environment 
(in vivo) to the 2-dimensional environment [2]. In the case of muscular 
stem cell, neonatal skeletal muscle is the main source of culture cell area 
for the in vitro laboratory experiment [1]. In most of the cases, cells in 
the in vitro lost their intra- and extracellular interactions because of 
the different aspects of the cell lines and the lack of heterogeneity. As a 
result, irregularity and inconsistency might occur for cells to spread out 
and express their activation and proliferation-able capabilities. On the 
other hand, lack of homeostatic regulatory factors and heterogeneity 
in the culture media could misinterpret the original stem for the 
overall cell populations. The characteristics of the cells in the in vitro 
are influenced by the induced force and environment factors including 
growth and hormones [2]. Furthermore, cells in the short term culture 
media may have the stability; however, heterogeneous cell property 
can produce variability in different points throughout the in vitro cell 
life cycle. Unlike in vivo, most of the cases, cultured cells are unable to 
exhibit their fundamental properties because of higher probability of 
cell contamination and tendency for rapid confluency; however, in vitro 
provides an enormous level of simplicity, where complexity of living 
organism is a great barrier for the clinical research.

3. Computational Analysis
Computational models play a vital role for experimentalists and 

biomedical researchers in recent year as their collective understanding 
increasingly elucidating the complicated intramolecular actions and 
tissue philosophy [15-19]. Dynamics of the proliferation-able muscle 
stem cells followed by myotrauma is a function of time and dependent 
on the growth factors as well as intrinsic and extrinsic molecular 
properties [1]. In this proposed model, cells are primarily classified 

Proliferation-able cell          Partially differentiated cell

Terminally  differentiated  or End cell           Dead cell

Figure 3: Stem cell branching model.
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based on their proliferation-able capabilities, since use of other 
molecular properties including morphology or phenotypes for their 
classifications would be a nontrivial process. The dynamic behaviours 
presented here are excited and accelerated by the activation signal and 
the heterogeneity in the cell populations. Typically, declination for the 
dynamic behaviour of growth process increases with the decrease of 
the cell proliferation-able probability. These properties are random in 
nature and the regulatory mechanisms of the proliferation- able cell 
populations are influenced by these properties. Execution and design 
architecture of the proposed model can be conceptualized, from the 
following subsections, the model diagram illustrated in figure 4 and 
proposed model stated by eq. (8).

3.1 Assumptions
Proposed convergent model is purely computational and based on 

the stochastic estimation theory. Moreover, stem cell populations under 
study exhibits homogeneous cell characteristics during their transition 
cycle and heterogeneous characteristics as a whole. In this context, stem 
cell is considered as a proliferation-able and participates in cell growth 
process as long as it has the capability to self-renewal or grows through 
the two most classical divisional processes known as symmetrical and 
asymmetrical cell divisions [8-12]. Furthermore, muscle stem cell with 
initial cell population 4 (number of initial cells) has been considered 
and studied over the time period 0-10 days. The main reason to 
consider myogenic satellite cell is that, these cell populations are initially 
(unperturbed state) non-proliferative and stay in the quiescent state 
[1,6] and require an external stimuli (myotrauma) for their activation 
and proliferation [1]. The concept of these initialization and activation 
processes resemblance to the model initialization, execution, estimation 
and termination processes. In addition, computational aspects for this 
cell population are still undefined and very little is known regarding the 
molecular phenotype of the satellite cell [1]. Therefore, understanding 
the ability for myogenic cell to proliferate and differentiate could 
improve the capability to treat debilitating muscular diseases, like 
cachexia, cardiac and muscular dystrophy.

3.2 Discrete-time computational model

Quantitative understanding for the cell growth dynamics is the 
fundamental aspect of cell biology; since, it institutes the regulatory 
mechanisms responsible for the expansion of cell population and 
acceleration of their therapeutic process towards the appropriate 
lineage. On the other hand, sense of proliferation-able cell populations is 
the probability or tendency of cells to increase their volume. Therefore, 

quantification of this cell population is an essential prerequisite to 
manipulate stem cell biology.

Furthermore, this discrete time stochastic model is compiled under 
the assumption that fundamental concept of the growth cycle of stem 
cell is the same, where they have the ability to undergo three stages, such 
as, proliferation, differentiation and death or disappearance. However, 
these stages can be influenced by the respective environmental or 
growth factors. In addition, according to this model, proliferative 
capability of the cell population is characterized based on the in-vitro 
experimental design, a design technology used in the laboratory for cell 
research instead of inside the body.

Now, assume that proliferation process is stochastic in nature 
with probability R, where R is a discrete random variable with 
probability distribution PR=pi {i=0, 1, 2}; and S(0), D(.) and Q(.) are 
the initial cells, differentiated cells and disappearance of cells (death 
or apoptosis) respectively. In this context, proliferation means ability 
of cell populations to divide through symmetrical (two cells of same 
cellular fates or progeny) or asymmetrical (two cells of different cellular 
fates or progeny) cell division as shown in figure 5 [7,16]. Furthermore, 
if parameter F is the fraction of differentiated cell populations, which 
turned into the proliferation-able state during certain time cycle t. The 
model equation for the proliferation-able cell populations in discrete 
time domain at time t can be formulated:

S(t)=RS(t-1)+(2-R)[(F-1)D(S, t-1)-Q(S, t-1)](-1)(R-1)                      (8)

where,

t=1, 2, 3 . . . T (usually considered no of days);

S (t)≈0 for large value of T ;

F is an arbitrary variable, with 0 ≤ F (t) ≤ 1.

Furthermore, probability distribution of discrete random variable 
R (0 ≤ R ≤ 2):

2

1 2 1 0

0

if R=2
( )  if R=1

if R= 0


= + +



R

p
P R p p p p

p
3.3 Convergence properties of discrete time model

Convergence approach presented here is purely computational. The 
basic concept of this methodology is to show that, the model equation 
stated in eq. (8) represents the cell proliferation process and cessation 
of proliferation capability occurs during their finite life cycle T. In other 
words, the difference between eq. (1) and (8), | S-X |, converges to zero 
for finite value of T and S→X→0 at the end of the growth cycle, where X 
and S represent proliferation-able cells in the case of clinical experiment 
and computational model respectively.

Moreover, parameters in eq. (8) are function of time and dependent 
on the proliferation ability of the cell population; and accordingly, it 
is assumed that all cells execute inherent homogeneous characteristic 
during each transition cycle, however their property is inherently 
heterogeneous as a whole.

Now, according to the probability distribution and underlying 
assumptions including homogeneous and heterogeneous cell 
characteristics, consider that all cells would experience one of the 
following three possible proliferation properties during transition cycle 
from t to t+1:

Property 1: PR=p2

In this case, each cell with R=2 has the capability to divide only 
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Cell and Signal
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Cells
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cells S(.)

Cells Detector 
Time Domain
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Output
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Figure 4: Design architecture.
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into two progenitor cells through symmetric or asymmetric process. 
There is no differentiated or dead (or disappearance) cell occurred at 
this transition cycle with this probability distribution. Under these 
assumptions, regardless of the values of other model parameters, the 
outcome of discrete time model eq. (8) represents proliferative cell 
dynamics, which can be stated as:

S(t)=2S(t-1)                                                                                           (9)

Property 2: PR=p1

According to this distribution property, stem cell has the limited 
proliferation-able capability with R=1 and produces one progenitor cell 
and one differentiated cell or end cell. Outcome of the model with this 
probability distribution, underlying assumptions and F=0:

S(t)=S(t-1)-D(S,t-1)-Q(S,t-1)                                                           (10)

Property 3: PR=p0

In this stage, stem cell lost its proliferative capability with R=0 
through differentiation or disappearance process. However, some 
differentiated cells have the capability to become proliferationable (i.e, 
F !=0) cells and start the cell division process until F=0. But, based on 
the biological hypothesis, F=0, can be considered when the value of T is 
large. Hence, the model stated in (8) with this property represents the 
cessation of cell proliferation-able capability, which is also known as the 
end of cell proliferation life cycle, and can be stated:

S(t)=2[D(S, t-1)-Q(S, t-1)]→0                                                             (11)                                                  

in nonproliferation-able sense.

According to the three stated properties based on probability 
distribution, cessation of proliferation or growth process occurred when 
cells exhibit property 3, and while property 1 is essentially representing 
the growth only process for proliferation-able cell populations. On 
the other hand, in the in vitro experimental observations, it has been 
found that cessation of cell proliferation capability of cell populations 
occurred at the end of the cell proliferative life cycle T , where T is very 
large and finite. Therefore, the model would converge with experimental 
outcome once transition cycle executes distribution property 3 for large 
value of T.

Computationally,

| S-X | 0

Therefore,                                                                                                                                         (12)

 S(t)       Converge, subject to: R=0 for large T

Furthermore, it is also apparent from the aforesaid analysis that 
model stated in eq. (8) converges with eq. (1); and discrete random 
variable R and model parameter F are the definitions for the biological 
parameters γ and η under the assumption that model (cell cycle) would 
execute property 3 for large finite value of T. More importantly, like 
clinical hypothesis, it is also apparent from the above analysis that 
homogeneity and heterogeneity induced by the stated properties are 
also the necessary characteristics for the proposed model in order to 
maintain the continuation and controlling of the overall cell dynamics 
within the cell populations.

4. Model Estimation using Kalman Filter
Now, consider an unknown dynamic system with a state vector S 

(t) and system is driven by a random noise. Here, model stated by eq. 
(8) represents state equation, since it characterized the computational 
process of proliferation state. Using the properties of the discrete-time 
domain filter (Kalman Filter) [18-20], the state equation for transition 
from S (t) to S (t+1) state can be written as:

S(t+1)=C(t)RS(t)+(2-R)[(F-1)D(S, t)-Q(S, t)](-1)R−1+υ(t)                         (13)

Where C (t+1|t) and υ (t) are the state transition matrix and 
processed noise respectively. This noise is assumed to be white Gaussian 
and zero mean; and the covariance of the process noise is assumed 

2        Γ = Ψ p I where I=1. On the other hand, for a stationary system, the 
state vector S (t) would be fixed, and the transition matrix C (t+1|t) can 
be considered as identity matrix, but for the proposed nonstationary 
system, a more complex form of C (t+1|t) need to be developed, so that 
computational model can track the changes in response to the change 
of the environment [21-26].

Now, the measurement equation (desired) for the state at t+1 can 
be stated as:

Z (t+1)=HT (t+1)S(t+1)+ρ(t+1) = H [t, S]+ρ(t+1)                        (14)

where ρ(t+1) is white Gaussian measurement noise with zero mean 
and covariance is given as [18-20]:

                    E[ρ(t)ρ(i)]= 2σm (t)δti                                                                               (15)

where (.)T represents transpose.

Estimate  of measurement (desired value) Z (t + 1) can be stated as:
ˆˆ 1 1  1  (   | ) ( ) ( | )  + = + +TZ t t H t S t t                                                                  (16) 

Mean square error (MSE) between desired and computational 
outputs:

( ) ( )   )1 1(  = + − +e t Z t t  
2

min[D, Q]
max =E[e (t)]MSE                                             (17)

The objective is to find out the minimum value of MSE in such a 
way that model converges for finite large value of T, where t=0, 1,....., 
T . More importantly, using the approximation of cell biology and the 
illustrated properties in section 3.2, model stated by eq. (8) would 
also be converged for large values (population) of D (t) and Q (t) in 
MSE sense. Since at this stage, proliferation property has a negligible 
effect on the growth process due to the influence of non-proliferative 
cell populations. Furthermore, according to clinical theory, this 
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Figure 5: Single cell division process [7].
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approximation is also observable at the end of cell proliferative life 
cycle, where the value of T is large and finite.

Now, innovation of measurement residue [18,20]:

ν (t+1)=Z(t+1)- Ẑ (t+1|t)                                                                     (18)
State prediction is:

( )ˆ ˆS 1     ( S| ) ( )     |   + =t t C t t t                                                                               (19)

where,
( )| [ (Ŝ    E S ( )]  |  )  =t t t Z t

Hence, state update equation can be stated as:
ˆ ˆS 1 1 S 1( | ) ( | ) k 1  1 ,  ( ) ( )ν+ + = + + + +t t t t t t                                                       (20)

where k(t) is filter gain and can be stated as:

( ) ( )1 1 1 1 1 | ) (   ( ) )+ = + + + −Tk t P t t H t M t                                                  (21)

and estimated (predicted) state conditional covariance [18]:

 P (t +1|t)=C(t)P (t|t)C T(t)+Γ(t)                                                                                           (22) 

Innovation covariance:
2M  1 1 1 . 1 1  ( ) ( ) (    ) ( | ) ( )σ+ = + + + + +T
mt t H t P t t H t                                   (23)

Covariance update:

 P (t+1|t+1)=P(t+1|t)-k(t+1)M(t+1)kT(t+1)                                                                         (24) 

Alternate (using Matrix Lemma) form of covariance update [18,27]:

( ) ( ) ( ) 2  1   1 1   1 1    1 1 ( 1) | |  [ ]σ+ + − = + − + + − +T
mP t t P t t H t H t        (25)

For large initial value condition, if first term of right hand side of eq. 
(25) can be neglected, then eq. (25) can be restated as:

( ) ( ) ( )11 2   1   1       | 1     1σ
−−+ + = + +  

T
mP t t H t H t                                       (26)

This is a recursive and linear process starting from eq. (14), and 
the process would stop once the stop criteria are met. Furthermore, 
difference illustrated in eq. (17) represents the differences between the 
desired and the computational outputs estimated using the proposed 

model in eq. (8) with underlying assumptions. If the desired output Z 
(t) can be interpreted as an approximation of the actual desired output 
using the underlying assumptions, then the actual desired output Ad 
(t) and its approximation Z (t) with approximation error Eappr (t) can 
be related as:

Ad(t)=Z (t)+Eappr (t)                                                                                               (27)

If Ad (t) and Eappr (t) are considered as white Gaussian, zero mean 
and uncorrelated, then

σ(t)2=MMSE+E[Eappr]                                                                         (28)

Therefore, if the measurement Z (t) is generated using the realistic 
approximation of the actual out-comes then σ2(t) would be approximated 
based on the MMSE that can be achieved by the underlying assumptions 
and the filtering model stated above. For non stationary environment, 
the state transition matrix F (t+1|t)≠ 0 and 2 0Ψ ≠p  will make the state 
equation unstable. If the state covariance matrix Γ represents the total 
uncertainty due to the adapting stationary environment assumption 
represented by using identity state transition matrix in eq. (13) and eq. 
(22). The effect associated with this deviation due to the nonstationary 
environment prevents Kalman filter gain from decaying to the values 
that are too small. Therefore, estimation of Ŝ must be able to follow the 
variation due to the non stationary heterogeneous environment.

5. Simulations
The outcome and the performance of the proposed discrete 

computational model presented here, in figures 6 and 7, are based on the 
synthetic data and over the time period 0-10 days (T=10) (normalized 
and scaled). Furthermore, time domain filter, Kalman filter, is used 
in order to analyze the efficiency of the proposed computational 
architecture, and found that the trajectory from the estimated outcome 
is the close approximation of the synthetic truth.

Figure 6 shows proliferation-able cell cycle in temporal domain, 
and found that the model has converged for large value of t (=T). This 
computational simulation is performed over 0-10 days with initial cell 
population at day zero is 4. According to this figure, upon receiving 
the excitation pulse (i.e., execution of model), quiescent (initial) cells 
become proliferation-able cells and start to grow. It also shows that 
cells proliferate extensively within 2-4 days, and gradually start to lose 
their propagation property after the day 4, and complete cessation of 
this process occurs within 7-8 days. The cessation of proliferation-able 
property for this model is slightly higher than experimental expectation 
(i.e., typically 5-6 days), because of the property of the induced model 
parameter F. Since, based on this property, some of the differentiated 
cells have the ability to be proliferation-able cells and start to participate 
in the division process.

Figure 7a represents the comparison between time domain filter 
outcome (estimated) and the model truth. According to this figure, 
estimated proliferating process is close to the synthetic truth from 
day 0-2, but slightly deviated from the truth from day 2-4 due to the 
influence of extensive (i.e., model parameters R and F or doubling 
factor) growth of proliferation-able cell populations. On the other 
hand, de-proliferation process is close to the truth data after day 4 until 
day 6, but it is slightly deviated from the truth after day 6 due to the 
de-differentiated parameter F , however for large value of T (=10), it 
converged towards the synthetic truth. More importantly, mean square 
error (MSE) presented in figure 7b for this computational process is 
below 1 for most of the cases after 20 iterations.

Figure 8 states the comparison among the distribution properties 
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stated in section 3.2, over the time period 0-10 days. Distribution 
property represented by property 1 is a (homogeneous) growth only 
process, while property 2 represents the state where cell has the equal 
probability to execute proliferation and differentiation processes. 
Furthermore, property 3 is simply a decay process. The performance 
of the proposed model and its combined effect on the computation of 
the proliferation process, and its convergence property are apparent 
from this simulation; and figure 8b is a snapshot of figure 8a for better 
understanding of the overall estimation process.

6. Conclusions
In this article, a simplest nontrivial discrete time convergence 

theory for proliferation-able stem cells and its estimation using Kalman 
filter (KF) has been proposed. Furthermore, muscle stem cell with 
initial cell population 4 has been considered and studied over the time 
period 0-10 days. On the other hand, the design approach of this model 
is purely computational, and the fundamental concept is to analyze the 
quantitative aspect of proliferation-able stem cells and compare it with 
the experimental hypothesis. This analysis is based on the observations, 
predictions. In this architecture, linear time variant filtering technique 
has been used, where homogeneous cell populations for a particular 
transition period and heterogeneous cell populations as a whole have 
been considered.

Discussions
Stem cell populations are in quiescent, but upon receiving the 

stimuli they become activated and undergo proliferation, differentiation 
and disappearance processes. Growth of these cell populations is 
random in nature and it is extremely influenced by the number of 
initial cells and their proliferative capacities. The properties in section 
3.2 state that proposed hypothesis converges when model exhibits 
property 3 (i.e., R=0 and F=0) within its finite transition period T. 
According to the experimental observations, this property is achievable 

for large value of T, where cells completely lost their proliferation 
capability (Figure 2). Therefore, proposed computational architecture 
is a close approximation under the assumption that model would 
reach at the stage, where probability distribution for random variable 
R=0 and de-differentiation parameter F=0 for large finite value of T. 
Furthermore, like experimental hypothesis, it is apparent that model 
executes heterogeneous and homogeneous characteristics because of 
the coordinated induced properties stated in section 3.2. In fact, like 
clinical biology, these properties are also the necessary conditions in 
order to control the cell dynamics for genetic stability of the model.

Furthermore, the objective of section 4 is to evaluate the performance 
of proposed model using Kalman filter. This bioengineering system 
is essentially linear, and linear dynamics of this filter has shown that 
model converges with the expected output in MSE sense. According 
to trajectories in section 5, it is found that proposed output is slightly 
deviated from the truth, and the main reason for this deviation is due 
to the de-differentiation parameter F. This induced parameter has also 
influenced the cessation of proliferation period, and as a result it is also 
observable that this cessation time is higher than the experimental 
expectation.

Applications
Typically, proliferation is the growth process which increases the 

cell volume in the cell culture or inside the body. Studies found that, 
regulatory mechanism of stem cell growth cycle can be characterized by 
the factors, responsible for this process [1,2]. However, unlike in-vivo, 
studies of growth process in the laboratory faces challenges due to the, 
genetic instability, variability and cell contamination in the one hand; 
and lack of permissive and repressive factors responsible for cellular 
activities on the other hand [1,2]. As a result, an extensive number 
of in vitro experiments need to be run in the laboratory in order to 
optimize the clinical understanding. But, like in vivo, in vitro studies are 
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also facing ethical, financial and resource limitations in time domain. 
Hence, proposed estimation model could be used as a bioexperimental 
tool to study the possible pattern of the stem cells growth process in the 
laboratory (i.e., in vitro environment).

Therefore, the potential application of this model is in the biological 
research laboratory as an estimated experimental tool in order to 
predict and estimate a biological process. For example, consider an 
experiment, which is conducted in the laboratory using a biological 
system represented by figure 4b; when input is a biological raw input 
and output is an experimental outcome. The biological transfer 
function (system) which is responsible to produce this end result is 
essentially a composite biological culture media (system) induced by 
the experimentalists under a specific clinical environment. In fact, 
this composite biological system is the main area of interest for the 
experimentalists; since, the sample of this system characterizes the 
nature of the induced biological regulatory factors required for this 
process. Now, replace this known biological system in figure 4b with 
the model stated in eq. (8) and represented by figure 4a, and run the 
estimation process in time domain. As the input and the expected 
output are known from the previous biological experiment for this 
estimation system, it can be stated from the final expected outcome 
of the model that the characteristics of the system of the proposed 
model resembles to that biological system. Besides, model parameters 
can also be comparable with the induced biological factors under that 
environment. As a result, this estimated outcome can be used as a 
predicted model for the next laboratory experiments under the similar 
environment. Therefore, this model would be useful to enhance and 
simplify the decision making ability for the researchers by predicting the 
characteristics of the biological factors based on the multi-dimensional 
interests before preparing and executing the laboratory experiments. 
Execution of repeated experiments in laboratory could be very complex 
and infeasible otherwise.

More importantly, model is based on the synthetic data, and as 

a consequence, some unavoidable computational irregularity and 
inconsistency may occur due to the lack of coordination between the 
biological dynamics and the underlying stochastic distribution of the 
engineering hypothesis. Finally, the proposed quantitative analysis of 
proliferation-able stem cells stated in eq. (8) may also be implementable 
for differential cell populations; however, unlike proliferative cell, this 
process is slow and stayed in that state for a long period of time. In 
conclusion, this computational analysis is based on the observable 
biological cell properties for both of the cell populations in the 
laboratory, from engineering point of interests; and due to limited 
excess to the biological resources, perhaps it would be a challenging 
task to summarize the model performance under realistic experimental 
framework without having more extensive validation with the clinical 
hypothesis.
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