
Open AccessISSN: 2169-0316

Industrial Engineering & ManagementResearch Article
Volume 10:5, 2021

A Designed System for Providing Solutions to Basic
Engineering Problems

Abstract
Engineering and the manner in which engineers think is largely visual and functional, and yet engineers are typically provided with a lot of other basic engineering
problems to be solved and applied to complex ones. This paper present a designed software for providing solutions to some basic engineering problems. C++
programming language was used in writing the codes. The paper explains the activities involved in C++program development and touched areas such as the general
concept of programming, programming languages, compilation and interpretation, storage and execution, functional lines to which computer programs maybe
categorized. Several engineering problems and their various real-world applications were considered to accomplish the aim of the work. The problem requirements were
properly understood, and the program adequately developed using the Dev-C++ software. The program was coded in a modular fashion, and constructed in a manner
that can be fairly understood. Algorithms and flow charts for the basic engineering problems considered were obtained and using formula translation, solutions to such
issues were dynamically programmed using the Dev C++ software. The results from the developed software when compared with other methods such as numerical
and approximate analytical solutions were observed to be the same. The developed software is however, more user friendly and can be implemented at A Level Higher
Institutions, as well as have many other real-world applications.

Keywords: Design, Software, Basic Engineering, Programming, C++ Program.

Paul Tamaragaibi*
Paul Tamaragaibi, Applied Mechanics and Design/Production Research Group, Department of Mechanical Engineering, Nigeria Maritime University, Okerenkoko,
Delta State, Nigeria.

*Address for Correspondence: Paul Tamaragaibi, Applied Mechanics and
Design/Production Research Group, Department of Mechanical Engineering,
Nigeria Maritime University, Okerenkoko, Delta State, Nigeria, Tel: 07061649506,
E-mail: paul.elijah@nmu.edu.ng

Copyright: © 2021 Paul Tamaragaibi, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Received 07 May 2021; Accepted 21 May 2021; Published 28 May 2021

Introduction

Generally, a computer program is a recipe, a structured list of instructions to
be sequentially executed by a CPU. In programming, every detail is clearly
specified, as there are no assumptions (i.e. the CPU is “dumb”). Instructions
also cover abnormal inputs, outputs or conditions. A computer program is
therefore a collection of instruction that can be executed by a computer to
perform a specific task (Rochki nd, 2004). Most computer devices require
programs to function properly. A computer programmer usually writes
a computer program using a programming language. From the program
in its human-readable form of source code, a compiler or assembler can
derive machine code (a form consisting of instructions that the computer
can directly execute). Alternatively, an interpreter may execute the computer
program.

It is also the process of writing or editing source code. Editing source code
involves testing, analyzing, refining, and sometimes coordinating with other
programmers on a jointly developed program. A person who practices this
skill is referred to as a computer programmer, software developer, and
sometimes coder. Code breaking algorithms have existed for centuries. In
the 9th century, the Arab mathematician Al-Kindi described a cryptographic
algorithm for deciphering encrypted code; in a manuscript on deciphering
cryptographic messages. He gave the first description of cryptanalysis by
frequency analysis, the earliest code-breaking algorithm [1].

Computer programs are stored and executed as binary digits in the RAM and
CPU. The binary numbers represent instructions and data in the program.
Programs are written in high-level languages (e.g. C, C++, Python, etc.).
They are either compiled or interpreted into assembly code, then converted

into binary machine code, and finally executed. Compiled languages have
the high-level program permanently converted and stored as binary (i.e. they
are converted directly into machine code that the processor can execute),
while Interpreted languages have them stored as it is and only converted
at runtime (meaning that they run through a program line by line and
execute each command). In the implementation of numerical methods, any
mathematical problem reduced to a numerical problem, can be solved with
a computer program [2]. An example is to implement Newton-Raphson’s
method using programming pseudocode. Here it includes finite series
expansion, transformations, search, sort and recursive problems.

A collection of computer programs, libraries, and related data referred to
as software. Computer programs may be categorized along functional lines,
such as application software and system software. The underlying method
used for some calculation or manipulation is known as an algorithm. The
sometimes lengthy process of computer programming is usually referred
to as software development. The term software engineering is becoming
popular as the process is seen as an engineering discipline.

Software design is the process of envisioning and defining software solutions
to one or more sets of problems. One of the main components of software
design is the software requirements analysis (SRA). SRA is a part of the
software development process that lists specifications used in software
engineering.

The C++ is a statically typed, compiled, general-purpose, case-sensitive,
free-form programming language that supports procedural, object-oriented,
and generic programming. It is a middle-level language, as it comprises of
high-level and low-level language features. This language was developed
by BjarneStroustrup starting in 1979 at Bell Labs, as an enhancement to the
C language and originally named C with Classes but later it was renamed
C++ in 1983.

Programming languages

According to Wilson (1993) [3] computer programs can be categorized by
the programming language paradigm used to produce them. Two of the
main paradigms are imperative and declarative. Imperative programming
languages specify a sequential algorithm using declarations, expressions,
and statements:

Ind Eng Manage, Volume 10:5, 2021Tamaragaibi P.

Page 2 of 8

1. A declaration couples a variable name to a data-type (for example: var x:
integer;)

2. An expression yields a value (for example: 2 + 2 yields 4)

3. A statement might assign an expression to a variable or use the value of
a variable to alter the program's control flow (for example: x := 2 + 2; if x = 4
then do something ();)

One criticism of imperative languages is the side effect of an assignment
statement on a class of variables called non-local variables.

Declarative programming languages describe what computation should
be performed and not how to compute it. Declarative programs omit the
control flow and are considered sets of instructions. Two broad categories
of declarative languages are functional languages and logical languages.
The principle behind functional languages (like Haskell) is to not allow side
effects, which makes it easier to reason about programs like mathematical
functions (Wilson, 1993). The principle behind logical languages (like Prolog)
[4] is to define the problem to be solved and leave the detailed solution to
the Prolog system itself (Wilson, 1993). A list of sub goals defines the goals.
Then each sub-goal is defined by further providing a list of its sub-goals, etc.
If a path of sub-goals fails to find a solution, then that sub-goal is backtracked
and another path is systematically attempted.

Compilation and interpretation

A computer program in the form of a human-readable, computer programming
language is a source code. A source code may be converted into an
executable images by a compiler or assembler, or executed immediately
with the aid of an interpreter.

According to Silberschatz (1994) [5] compilers translate source code from
a programming language into either object code or machine code. Object
code needs further processing to become machine code, and machine
code consists of the central processing units native instructions, ready
for execution. Compiled computer programs are commonly referred to as
executables, binary images, or simply as binaries (a reference to the binary
file format used to store the executable code).Some compiled and assembled
object programs need to be combined as modules with a linker utility in order
to produce an executable program.

Interpreters execute a source code from a programming language line-by-
line. The interpreter decodes each statement and performs its behavior. One
advantage of interpreters is that they can be easily extended to an interactive
session. The programmer is presented with a prompt, and individual lines of
code are typed in and performed immediately.

The main disadvantage of interpreters is that computer programs run
slower than when compiled. Interpreting a code is slower because the
interpreter must decode each statement and then perform it. However,
software development may be faster using an interpreter because testing
is immediate when the compiling step is omitted. Another disadvantage is
that an interpreter must be present on the executing computer. By contrast,
compiled computer programs need no compiler present during execution.
Just in time compilers pre-compile computer programs just before execution.
For example, the Java virtual machine hotspot contains a just in time
Compiler which selectively compiles Java bytecode into machine code – but
only codes which the hotspot predicts is likely to be used many times. Either
compiled or interpreted programs might be executed in a batch process
without human interaction. Scripting languages are often used to create
batch processes. One common scripting language is Unix shell, and its
executing environment is the command-line interface.

No properties of a programming language require it to be exclusively
compiled or exclusively interpreted. The categorization usually reflects the
most popular method of language execution. For example, Java is thought
of as an interpreted language and C a compiled language, despite the
existence of Java compilers and C interpreters.

Storage and Execution

Typically, computer programs are stored in non-volatile memory until
requested either directly or indirectly to be executed by the computer user.
Upon such a request, the program is loaded into random-access memory;
by an operating system, where the central processor can directly access
it. The central processor then executes ("runs") the program, instruction
by instruction, until termination. A program in execution is called a process
(Forsythe et. al., 1977). [6] Termination is either by normal self-termination,
by user intervention, or by error – software or hardware error.

Simultaneous execution

Many operating systems support multitasking which enables many computer
programs to appear to run simultaneously on one computer. Operating
systems may run multiple programs through process scheduling (a software
mechanism to switch the CPU among processes often so users can interact
with each program while it runs (Omijeh, 2009). Within hardware, modern
day multiprocessor computers or computers with multicore processors may
run multiple programs.

Self-modifying programs

A computer program in execution is normally treated differently from the data
the program operates on. However, in some cases, this distinction is blurred
when a computer program modifies itself. The modified computer program
is subsequently executed as part of the same program. Self-modifying code
is possible for programs written in machine, assembly language, Lisp, C,
COBOL, PL/1, and Prolong.

Functional Categories

Computer programs may be categorized along functional lines. The
main functional categories are application software and system software.
System software includes the operating system which couples computer
hardware with application software (Silberschatz 1994). [7] The operating
system provides an environment in which application software executes
in a convenient and efficient manner. In addition to the operating system,
system software includes embedded programs, boot programs, and micro
programs (Wilson, 1993). Application software designed for end users have
a user interface. Application software not designed for the end user includes
middleware, which couples one application with another. Application software
also includes utility programs. The distinction between system software and
application software is under debate.

Application software

There are many types of application software:

1. The word app came to being in the 21st century. It is a clipping of the word
"application". They have been designed for many platforms, but the word
was first used for smaller mobile apps. Desktop apps are traditional computer
programs that run on desktop computers. Mobile apps run on mobile devices.
Web apps run inside a web browser. Both mobile and desktop apps may
be downloaded from the developers' website or purchased from app stores
such as Microsoft Store, Apple App Store, Mac App Store, Google Play or
Intel AppUp.

2. An application suite consists of multiple applications bundled together.
Examples include Microsoft Office, LibreOffice, and iWork. They bundle a
word processor, spreadsheet, and other applications.

3. Enterprise applications bundle accounting, personnel, customer, and
vendor applications. Examples include enterprise resource planning,
customer relationship management, and supply chain management software.

4. Enterprise infrastructure software supports the enterprise's software
systems. Examples include databases, email servers, and network servers.

5. Information worker softwareare designed for workers at the departmental
level. Examples include time management, resource management, analytical,
collaborative and documentation tools. Word processors, spreadsheets,
email and blog clients, personal information system, and individual media
editors may aid in multiple information worker tasks.

Ind Eng Manage, Volume 10:5, 2021Tamaragaibi P.

Page 3 of 8

6. Media development software generates print and electronic media for
others to consume, most often in a commercial or educational setting.
For instance, the advancement of novel broadband interaction services,
harnessing of telecommunication and computers, recent advances in the
field of interaction protocol have fostered numerous proposals for the uses of
ICT to support the instruction and learning environment in higher education
(Amini-Philips and Elijah, 2019). These produce graphics, publications,
animations, and videos.

7. Product engineering software helps develop large machines and
other application software. Examples includes computer-aided design
(CAD), computer-aided engineering (CAE), and integrated development
environments.

8. Entertainment Software can refer to video games, movie recorders and
players, and music recorders and players.

Utility programs

Utility programs are application programs designed to aid system
administrators and computer programmers.

Operating system

An operating system is a computer program that acts as an intermediary
between a user of a computer and the computer hardware (Silberschatz1994).

In the 1950s, the programmer, who was also the operator, would write a
program and run it. After the program finished executing, the output may
have been printed, or it may have been punched onto work tape or cards
for later processing (Wilson, 1993). Usually, the program did not work. The
programmer then looked at the console lights and fiddled with the console
switches. If less fortunate, a memory printout was made for further study. In
the 1960s, programmers reduced the amount of wasted time by automating
the operator's job. A program called an operating system was kept in the
computer at all times. Originally, operating systems were programmed in
assembly; however, modern operating systems are typically written in C.

Boot program

A stored-program computer requires an initial computer program stored in
its read-only memory to boot. The boot process is to identify and initialize
all aspects of the system, from processor registers to device controllers to
memory contents (Wilson, 1993). Following the initialization process, this
initial computer program loads the operating system and sets the program
counter to begin normal operations. [8]

Embedded programs

Independent of the host computer, a hardware device might have embedded
firmware to control its operation. Firmware is used when the computer
program is rarely or never expected to change, or when the program must
not be lost when the power is off.

Microcode programs

Microcode programs control some central processing units and some other
hardware. This code moves data between the registers, buses, arithmetic
logic units, and other functional units in the CPU. Unlike conventional
programs, microcode is not usually written by, or even visible to, the end
users of systems, and is usually provided by the manufacturer, and is
considered internal to the device.

The intent of the work is to design a system that gives solution to some basic
engineering problems, based on their formula and applications. Specifically,
the objectives of the study include:

1. To understand basic engineering problem requirements and design an
efficient way of solving them using algorithm.

2. To develop a system using the C++ software, that will accept user’s input
for certain engineering problems, and then provide adequate solutions.

Methodology

The methodology used for the development of this application was a top-
down approach. The design began by specifying complex pieces of the
problem, and then dividing them into successively smaller pieces. The top–
down technique was used to write a main procedure/function that names all
the major functions it needed.

The requirements of each of those functions were also considered and
the process was repeated. These compartmentalized functions eventually
performed actions so simple, easy and concise codes. After the various
functions had been coded the program was ready for testing. By defining
how the application comes together at a high level, lower level work could be
self-contained. By also defining how the lower level abstractions integrated
into higher level ones, the interface became clearly defined.

The program codes were properly written and tested using an assortment of
variables to check for logical errors. Some of the basic engineering problems
to be simulated were the Fibonacci series, Simultaneous equations,
Factorials, Cubic Polynomial equations, and Pascal’s Triangle, etc.

Dev-C++ was used in carrying out this project. Dev-C++ software is a free
full-integrated development environment distributed under the GNU General
Public License for programming C and C++. For the purpose of this work,
C++was used as the programming language for the design of the software.

C++ is a statically typed, compiled, general-purpose, case-sensitive, free-
form programming language that supports procedural, object-oriented,
and generic programming. It is regarded as a middle-level language, as it
comprises a combination of both high-level and low-level language features.
It was developed by Bloodshed software until 2005, Orwell (Johan Mes)
since 2011.

The following steps are used as procedure for this work:

Installation of Dev-C++ software:

Dev-C++ software was used and installed on a laptop. It comes in different
version with almost same features and functions. The 2019 version was
the latest when this research was carried out (with code name "Dev 16"
and latest update version "16.6.4") and the researchers believe it has more
advantages in terms of software compilation, as such it is used for this work.

Algorithm

An algorithm is a special case of an iterative method, which generally need
not converge in a finite number of steps (Chipperfield and Fleming, 1994;
Cody and Smith, 2006; Elijah and Etebu; Elijah et. al., 2020). Instead,
an iterative method produces a sequence of iterates from which some
subsequence converges to a solution.

It is procedure for finding a valve (say x) such that f (x) is as small (or as
large) as possible, for a given function f, possibly with some constraints on
x. Here, x can be a scalar or vector of continuous or discrete valves. An
algorithm terminates in a finite number of steps with a solution (Fehlberg,
1977).

Designing the Software

For the purpose of clarity, some of the algorithm as well as codes used in
designing the software are respectively shown below:

The Algorithm

Step 1: Start

Step 2: Declare variables

Step 3: Print the engineering problems menu, and ask the user to make a
choice

Step 4: Enter choice

If choice is 1(Fibonacci Series):

Ind Eng Manage, Volume 10:5, 2021Tamaragaibi P.

Page 4 of 8

#include <iostream>

#include <string>

#include <cmath>

#include <vector>

using namespace std;

int fib(){

 fstreampaul;

 paul.open("ElijahProject.doc", ios::out | ios::app);

 doublei,a,n,f;

 stringfibChoice;

 vector<int> fib;

 cout<<"1. Generate first n numbers in the fibonacci series.\n2.
Find the nth term in the fibonacci series.\nSelect your choice:";

 cin>>fibChoice;

 paul<<"\n1. Generate first n numbers in the fibonacci series.\
n2. Find the nth term in the fibonacci series.\nSelect your choice:
"<<fibChoice<<endl;

if(fibChoice=="1"){

 cout<<"Enter the amount of fibonacci numbers you
want displayed: ";

 cin>>n;

 paul<<"\nEnter the amount of fibonacci numbers you
want displayed: "<<n<<endl;

 fib.push_back(0);

 cout<<fib[0];

 fib.push_back(1);

 cout<<", "<<fib[1];

 paul<<fib[0]<<", "<<fib[1];

 for(i=0; i<=n-3;i++){

 f = fib[i]+fib[i+1];

 fib.push_back(f);

 cout<<", "<<fib[i+2];

 paul<<", "<<fib[i+2];

else if(fibChoice=="2"){

 cout<<"Enter the term number you want to find: ";

 cin>>n;

 paul<<"\nEnter the term number you want to find:
"<<n<<endl;

 fib.push_back(0);

 fib.push_back(1);

 for(i=0; i<=n-3;i++){

 f = fib[i]+fib[i+1];

 fib.push_back(f);

 }

 cout<<"The "<<n<<"th term in the fibonacci series is

Print the Fibonacci series problem menu, and ask the user to make a choice

Enter choice

If selection choice is 1(Generate list of Fibonacci
numbers):

Enter the amount of numbers to be displayed

Calculate for eachnumber

Print list of numbers

Else if selection choice is 2(Find the nth number in the
Fibonacci series):

Enter the nth term you want to find

Generate the nth term

Print the nth term

Prompt the user if they want to calculate another engineering problem

Enter answer

If answer is yes: Go to Step 3

Else: Go to Step 5

Else if choice is 2 (Simultaneous Equations):

Enter the coefficients of the first equation Enter the coefficients of the second
equation

Calculate for the solutions to each variable (x and y)

Print solutions to x and y

Prompt the user if they want to calculate another engineering problem

Enter answer

If answer is yes:

Go to Step 3

Else:

Go to Step 5

Else if choice is

Else if choice is 3(Factorial):

 .

 .

 .

Else:

Print an Invalid Entry message

Prompt the user if they want to calculate another engineering problem Enter
answer

If answer is yes:

Go to Step 3

Else:

Go to Step 5

Else:

Go to Step 5

Step5:End program.

The Codes

#include <fstream>

Ind Eng Manage, Volume 10:5, 2021Tamaragaibi P.

Page 5 of 8

"<<fib[n-1]<<".";

 paul<<"\nThe "<<n<<"th term in the fibonacci series is
"<<fib[n-1]<<"."<<endl;}

 else {return 0;}

 paul.close();} intsimeq(){

 fstreampaul;

 paul.open("ElijahProject.doc", ios::out | ios::app);

 double a,b,x1,x2,y1,y2,x,y;

 cout<<"\nEnter the coefficients of equation 1(x, y, and constant),
each separated with a space: ";cin>>x1>>y1>>a; paul<<"\nEnter the
coefficients of equation 1(x, y, and constant), each separated with a space:
"<<x1<<" "<<y1<<" "<<a<<endl; cout<<"Enter the coefficients of equation
2(x, y, and constant), each separated with a space: ";cin>>x2>>y2>>b;

paul<<"\nEnter the coefficients of equation 2(x, y, and constant), each
separated with a space: "<<x2<<" "<<y2<<" "<<b<<endl;

 x = (y2*a - y1*b)/(x1*y2 - x2*y1);

 y = (-x2*a + x1*b)/(x1*y2 - x2*y1);

 cout<<"\nx = "<<x<<", y = "<<y<<".";

 paul<<"\nx = "<<x<<", y = "<<y<<"."<<endl;

 paul.close();

int fact(){

 fstreampaul;

 paul.open("ElijahProject.doc", ios::out | ios::app);

 inti,n,product;

 cout<<"\nEnter the factorial number: ";

 cin>>n;

 paul<<"\nEnter the factorial number: "<<n<<endl;

 product=1.0;

 for(i=n; i>0; i--){

product=product*i;

 .

 .

 .

}else{

 cout<<"Invalid entry.";

 paul<<"\nInvalid entry."<<endl;

 selection:

 cout<<"\nMake another engineering problem
selection?(y/n) ";

 cin>>sel;

 paul<<"\nMake another engineering problem
selection?(y/n) "<<sel<<endl;

 if(sel == "y"){

 goto list }

 else if(sel == "n"){

 cout<<"OK.";

 paul<<"OK...\nEND OF PROGRAM.";

 return 0;

 }else{

 return 0;}} paul.close();

Flowcharts for the program

The Figures below show the flowchart for different solutions and instances of
invalid entries (Figures 1-7).

Start

S

Print engineering problems menu.
Input menu choice

I
s ye

s Choice=1 1

?

n
o

I
s ye

s 2 Choice =
2

? n
o

J

Figure 1: Main Menu and Fibonacci Series.

Figure 2: Main Menu and Simultaneous Equations Solutions.

Ind Eng Manage, Volume 10:5, 2021Tamaragaibi P.

Page 6 of 8

1

Print Fibonacci menu.

Input menu choice

Input menu choice.

Is Is
no

Choice = 1
no

Choice = 2

? ?

yes yes

Input n Input nth term

Calculate for nth term

Print list Print term

A

Calculate numbers in list

Figure 3: Main Menu and Factorial Solutions.

2

Enter coefficients of equation 1

Enter coefficients of equation 2

Print
x and y

B

Calculate values of x & y

Figure 4: Main Menu and Cubic Polynomial Equations Solutions.

3

Enter value for n

Calculate the factorial

Print the factorial

C

Figure 5: Main Menu and Pascal Triangle Solutions.

 4

Input the coefficients of the
Cubic polynomial equation

Print roots

D

Calculate for the 3 roots of the polynomial

Figure 6: Main Menu and Instances of Invalid Entries.

5

Input the number of rows in the
Pascal triangle to be displayed: x

Calculate the numbers in a row

Print numbers

Is
no

Counter =x

?

yes
E

Figure 7: Main Menu and Instances of Invalid Entries.

Figure 8: Plate1: A Screenshot of Fibonacci Series Solutions.

Figure 9: Plate2: A Screenshot of Simultaneous Equations Solutions.

Ind Eng Manage, Volume 10:5, 2021Tamaragaibi P.

Page 7 of 8

Results and Discussion

The implementation of this system was done using the C++ software provided
by the researchers. The program codes were written in a modular nature,
where each mathematical problem was handled by a separate user-defined
function. For the purpose of clarity, some parts of the console's output for
the complete program along with sample solution as well as screen shots are
respectively shown below:

1. Fibonacci Series.

2. Simultaneous Equations.

3. Factorial.

4. Cubic Polynomial Equation.

5. Pascal Triangle.

Select your choice: 1

1. Generate first n numbers in the fibonacci series.

2. Find the nth term in the fibonacci series.

Select your choice: 1

Enter the amount of fibonacci numbers you want displayed: 20

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181

Make another engineering problem selection?(y/n) y

1. Fibonacci Series.

2. Simultaneous Equations.

3. Factorial.

4. Cubic Polynomial Equation.

5. Pascal Triangle.

Select your choice: 1

1. Generate first n numbers in the fibonacci series.

2. Find the nth term in the fibonacci series.

Select your choice: 2

Enter the term number you want to find: 11

The 11th term in the fibonacci series is 55.

Make another engineering problem selection?(y/n) y

1. Fibonacci Series.

2. Simultaneous Equations.

3. Factorial.

4. Cubic Polynomial Equation.

5. Pascal Triangle.

Select your choice: 2

Enter the coefficients of equation 1(x, y, and constant), each separated with
a space: 1 2 3

Enter the coefficients of equation 2(x, y, and constant), each separated with
a space: 3 4 5

x = -1, y = 2.

Make another engineering problem selection?(y/n) y

 .

 .

 .

Select your choice: a

Invalid entry.

Make another engineering problem selection?(y/n) n

OK...

END OF PROGRAM (Figure 8 -13)

Conclusion

With the completion of the program, it is obvious that the objectives have
been met and that the development of a software for providing solutions
to basic engineering problems was concluded successfully. The problem
requirements were properly understood, as the program was adequately
developed using the Dev-C++ software. The program was coded in a modular
fashion, and was constructed in a manner that can fairly be understood.
Parts of the algorithm, source code and file-stream outputs contained in
the body of this article are provided to aid the reader in understanding the
program flow.

This work substantially added to the respective area of programming and
coding techniques. The programming solution to the engineering problems

Figure 10: Plate3: A Screenshot of Factorial Solutions.

Figure 11: Plate4: A Screenshot of Cubic Polynomial Equations Solutions.

Figure 12 : Plate5: A Screenshot of Pascal Triangle Solutions.

Figure 13: Plate6: A Screenshot of Instances of Invalid Entries.

Ind Eng Manage, Volume 10:5, 2021Tamaragaibi P.

Page 8 of 8

was done successfully utilizing the Dev C++ which gives modern experts
a flexible approach to anticipate conceivable coding dependability through
time management for debugging errors. This investigation has given a novel
structure to software development, which help:

i. minimizing the time of solving engineering problems.

ii. the use of each task/engineering problem designated to its unique function/
module gives a superior comprehensive evaluation of helping to eradicating
difficulties in the coding activities that can incur more resources (such as
time, money, and so on) to the programmer or organization (as the case
may be).

The researchers therefore recommend that this work be used as guide to
providing solutions to tens and hundreds of engineering problems. Also,
other programming languages should explored.

References

1. Dooley, John F. “A Brief History of Cryptology and Cryptographic
Algorithms.” Springer Science & Business Media (2013).

2. Elijah P, Elijah E and Ojong E. “Design of Engineering Project Planning
Software: A Case Study”. IOSR Journal of Mechanical and Civil
Engineerig (2020) 17 : 38-47.

3. Amini-Philip C and Elijah P.“Impact of Information and Communication
Technologies (ICTS) On Higher Education in Nigeria in the 21st Century”.
Journal of Humanities and Social Science (ISOR)(2019) 24: 837-845.

4. ChipperfieldA and Fleming P. “ Genetic algorithm toolbox user's guide.
Department of Automatic Control and System Engineering, University of
Sheffield.”((1994).

5. Cody R and Smith J. “Applied statistics and the SAS programming
language”.. Prentice Hall, fifth edition (2006).

6. Elijah Pand Etebu O.“ Project Planning Using Heuristics Approach: A
Case Study of GAP International Limited”.World Journal of Engineering
Research and Technology (WJERT) (2019) 5:154-163.

7. Erwin K. “Advanced Engineering Mathematics”. Wiley International
edition, tenth edition. (2011).

8. Fehlberg G. “Low-order classical Runge-Kutta formulas with step size
control and their application”. (1977).

How to cite this article: Paul Tamaragaibi. "A Designed System for Providing
Solutions to Basic Engineering Problems." Ind Eng Manage 10 (2021): 297.

