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Abstract 
Robust design is a proven process to achieve insensitivity. From 
the view point of numerical optimization, the robustness of the 
objective function makes the system performance insensitive to 
uncertainties. To better manage the uncertainties, the Taguchi 
method, reliability-based optimization and robust optimization 
can be used. This study suggests how to analyze a robust design 
problem using axiomatic design concept. The design axioms 
provide a general framework for design methodologies. Two 
axioms are (1) Independence Axiom and (2) Information Axiom.  
These axioms can be applied to all design processes in a general 
way. The first axiom illustrates the relationship between 
functional requirements (FRs) and design parameters (DPs). 
Then, the designs of products can be classified into three types: 
uncoupled, decoupled and coupled. Two goals of robust design 
can be defined as two functional requirements. One is to reduce 
the distribution of a response. The other is to set the mean of a 
response to its target. In general, it is easy to determine the 
robust solution for a uncoupled or decoupled design. However, 
the coupled design cannot currently give true robustness, leading 
to a trade-off between performance and robustness. In this paper, 
game theory is applied to optimize the trade-off between two 
functional requirements. 
 
Keywords: Axiomatic design, Coupled design, Robust design, 

Game theory  
 
1. INTRODUCTION 
A design procedure performed by the axioms is called axiomatic 
design. A special feature of the first axiom is that the design 
parameters are determined independently for the corresponding 
functional requirements [1]. The axiomatic design provides the 
idea to analyze the design quality.  This research classifies the 
robust design problem into three types by applying the first 
axiom.     
Robust designs improve product quality and reliability in 
industrial engineering. The concept of robust design was 
introduced by Dr. G. Taguchi in the late 1940s, and his technique 

based on this concept has become known commonly as the 
Taguchi method or the robust design. Since 1980s, the Taguchi 
method has been applied to numerical optimization, 
complementing the deficiencies of deterministic optimization. 
This newly developed optimization method is often called robust 
optimization, and it overcomes the limitations of deterministic 
optimization, which neglects the effect of uncertainties in design 
variables and/or design parameters [1-3].  
The uncertainties, which can be the tolerances of design 
variables and/or the variations in design parameters, often induce 
severe variations in the response function. Evidently, the robust 
design concept is essential to the design problem with variations. 
To consider robustness, statistics such as the mean and variance 
(or standard deviation) of a response should be calculated in the 
robust optimization process. Variations of a response are 
generated from uncertainties in design variables and/or design 
parameters. The purpose of a robust design is to find a design 
that will give target response  with the smallest variation [3, 4]. 
Axiomatic design has been used to provide a framework for design 
problems. It states that a design should be defined by independent 
functional requirements (FRs) and corresponding design parameters 
(DPs), and designers should minimize the information content of the 
designs [5, 6, 7]. Designers have to choose a correct set of DPs to be 
able to satisfy the FRs. Essentially, the FR is what we want to 
achieve and the DP is how we achieve it. The basic postulate of 
axiomatic design is that there are two fundamental axioms that 
govern a design process. This study utilizes the first axiom, called the 
independence axiom, to analyze the system.  
A mechanical system can be divided into three categories under the 
independence axiom. When the independence axiom is satisfied, the 
design matrix takes the form of a diagonal matrix; this is called an 
uncoupled design. An uncoupled design that satisfies the 
imposed design requirements and has the minimum information 
content is the optimum design. When the design matrix has a 
triangular form, the design is called a decoupled design, and 
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when a design matrix cannot be reorganized to a triangular form, 
the design is called a coupled design [5, 6].  
Minimizing the standard deviation and the difference between 
the mean and the target value of a response can be regarded as 
functional requirements that must be met to obtain a robust 
design. For an uncoupled or a decoupled system, a robust design 
can be easily achieved. Unfortunately, real design problems are 
often not included in uncoupled or decoupled designs. These 
designs cannot currently accomplish real robustness; thus, a 
trade-off between performance and robustness has to be made. In 
this research, game theory is applied to optimize the trade-off. 
Game theory is divided into two categories of non-cooperative 
and cooperative games. A cooperative game is a game in which 
players make decisions in cooperation with any player; on the 
contrary, a non-cooperative game is a game in which players do 
not cooperate with each other to reach the same goal. Thus, a 
robust design problem pertaining to a coupled design can be 
treated as cooperative game [8, 9, 10]. The mean and the 
standard deviation of the multiobjective function in a robust 
design can be treated as the responses. In addition, design 
variable set can be decomposed into the strategy set of two 
players.    
In this study, a two-bar design problem is solved to obtain its 
robust design through the suggested procedures. By the game 
theory approach using a bargaining function, the optimal 
solution is found [9].   

 
2. COUPLED DESIGN AND SIGNAL TO NOISE RATIO  
 

2.1. Coupled Design  
Axiomatic design is the framework for a good design. It helps to 
create synthesized solutions that satisfy perceived needs by 
mapping between FRs and DPs. An FR is the goal to achieve and 
is defined in the functional requirement domain, and a DP is the 
means to achieve this goal and is determined in the physical 
domain. Relevant DP can be chosen in the physical domain by 
the mapping process to satisfy a given FR in the functional 
domain [5, 6, 7]. 
Axiomatic design presents two axioms. One is the independence 
axiom, and the other is the information axiom. By the 
independence axiom, the FRs should be independently defined 
from the relation between FRs and DPs. That is, the FRs should 
be maintained independently. On the contrary, the information 
axiom requires that a design should minimize the information 
content. This study utilizes the independence axiom to take the 
coupled design out of an arbitrary dsign problem.  
In the axiomatic approach, FRs should be independently defined 
from the relation between FRs and DPs. The relationship 
between FRs and DPs are represented as 

ADPFR =                                                  (1) 
where FR is the functional requirement vector, DP is the design  
parameter vector, and A is the design matrix, respectively. 
Based on the independence axiom, designs are classified into 
three types: uncoupled, decoupled and coupled. For a design 
problem with two functional requirements and two design 

parameters, the design equations for uncoupled, decoupled and 
coupled designs are represented as Eqs. (2)~(4), respectively.  
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where Aij is the element value that cannot be negligible.   
To satisfy the independence axiom, the design matrix must either 
be diagonal or triangular. When the design matrix is diagonal, an 
FR can be satisfied independently by one DP; such a design is 
called an uncoupled design. When the matrix is triangular, the 
independence of FRs can be guaranteed if and only if the DPs 
are determined in a proper sequence; such a design is called a 
decoupled design. Any other form of a design matrix is called a 
coupled design [6, 7].      
 
2.2. Taguchi Method and Signal-to-Noise (S/N) Ratio [4] 
By the end of the 1940s, the Taguchi method had been 
developed by Dr. G. Taguchi for quality improvement of a 
product. His technique in quality engineering is referred as the 
Taguchi method or robust design. While the Taguchi method 
was successfully applied at the Electrical Communications 
Laboratories of the Nippon Telephone and Telegraph Company, 
AT & T Bell Laboratories became interested in it. In 1980, 
Phadke invited Taguchi to AT & T Bell Laboratories. After 
being impressed by the Taguchi method, Phadke published a 
textbook on the Taguchi method in 1989. 
The Taguchi method has greatly contributed to the quality 
improvement of various designs. In early case studies, the 
Taguchi method was applied to process designs rather than  
product designs because it was regarded as a method for design 
of experiments rather than a design methodology. 
Taguchi introduced a quadratic loss function to represent 
robustness as 

2)()( fmfkfL −=             (5) 

where f is the response function, mf is the target value, and k is 
the loss constant , respectively. The expected value of the loss 
function is defined as 

])([)]([ 22

ff mkfLEQ −+== µσ        (6) 

where µ and σf are the mean and the standard deviation of the 
response function, f, respectively.  
Robust design is a design with minimum average loss. Dr. 
Taguchi suggested that a product or a process design be 
composed of three levels: system, parameter, and tolerance 
designs. In the system design step, new ideas are generated to 
provide products to customers. In the parameter design step, the 
designer determines the optimum setting for control factors using 
orthogonal arrays and S/N ratios. The manufacturing cost will 
not be affected by the parameter design step since tolerances are 
fixed. The ultimate goal of the parameter design step is to make 
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products insensitive to noise factors without eliminating them. 
The tolerance design step is implemented to improve quality at a 
minimum cost. However, it should be used when the sensitivity 
of the responses in the parameter design step is not within a 
satisfactory range. The parameter design scheme of the Taguchi 
method, in particular, is adopted for robust design.  
In the parameter design step, control factors are determined to 
reduce the effect of noise factors. Therefore, noise factors are not 
directly considered. On the other hand, noise factors are directly 
controlled in the tolerance design step. In the parameter design 
step, the quality of a product or process is improved without cost 
increase, whereas in the tolerance design step, quality is 
improved with cost increase.  
When the target value of a response is given, the Taguchi 
method determines the optimum setting of the control factors so 
that the variation of the response is minimized, although any 
uncontrollable factor may exist. Eq. (6) can be regarded as an 
index to finding a robust design. Suppose that we have a scaling 
factor s to adjust the current mean to the target value. Scaling 
factor z is described as  

µ
mz = .                        (7) 

When the current mean is adjusted to the target value, the 
average loss function of Eq. (6) is changed to  
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Then, to enhance the additivity effect of the control factors, Eq. 
(8) is transformed to 
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Eq. (9) is the ratio of the power of the signal factors, µ ,and the 
power of the noise factors, σf. Thus, it is called the S/N ratio.  
Maximizing Eq. (9) is equivalent to minimizing Eq. (8). That is, 
a robust design is obtained by maximizing Eq. (9). 
 
2.3. Taguchi Method versus Design Matrix  
In Eq. (9), if any factors increase the mean of µf, instead of 
decreasing σf to maximize the S/N ratio, an incoherent answer 
can be obtained. Therefore, Eq. (9) is a function of mean and 
variance. Considerable risk of conflicting variability is involved 
[3].  
There are two goals in performing a robust design. One is to 
minimize the variability produced by the noises factors. The 
other is to approach the target value as close as possible. The 
design for one goal is not usually consistent with the one for the 
other goal. To meet both goals, Taguchi developed a two-step 
optimization strategy. The first step reduces the variation, and 
the second step adjusts the mean on the target. That is, if the 
factors affecting the variance and the mean are divided, a robust 
design can be obtained [4].  
Suppose that we have one response function, f. Then, its robust 
design would have two requirements: one is to minimize the 

standard deviation or the variance, and the other is to minimize 
the difference between the mean and the target value of the 
response. The design equation for the robust design can be 
represented as  
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The target value, mf, can be a positive infinite, a negative infinite 
or specified value for smaller-the-better, larger-the-better or 
nominal-the-best case, respectively. When the design matrix in 
Eq. (10) is either diagonal or triangular, a robust design can be 
easily achieved. However, in general, the design matrix for a 
robust design has the form of a coupled design.  
 
3. ROBUST DESIGN USING GAME THEORY  
A robust design, which is a function of standard deviation and 
mean of the responses, can be represented as [9]  

Minimize [f1(x)=|µ( x)- mf|, f2(x)=s(x), …, fk(x) ]   (11) 
 Subject to gj(x) ≤ 0, j=1,…,m                                   (12) 

where x is the design variable vector, fk(x) is the k-th objective 
function, s is the standard deviation, gj(x) is the j-th constraint 
function, and m is the number of constraints, respectively.  
The weighting method, constraint method, global criterion 
method, goal programming, etc are approaches that can solve  
multiobjective problems. In this study, the bargaining function is 
investigated to solve Eqs. (11)~(12). 

 
3.1. Game Theory  
Game theory is a branch of mathematics dealing with decision 
making in conflict situations. In the conflict situation, two or 
more players exist. The players have their own objective. Due to 
these features, game theory is often utilized to solve numerical 
optimization problems such as multiobjective optimization 
problems.  
Game theory is divided into two branches of non-cooperative 
and cooperative branches. A cooperative game consists of a set 
of players and a characteristic function. A cooperative game is a 
game in which players make decisions in cooperation with each 
other. Thus, a robust design problem pertaining to a coupled 
design is treated as a cooperative game in this study. 
 
3.2. Bargaining Function [8, 9, 10] 
Suppose that we have twp players A and B. Each player can 
select a strategy, vector x from an admissible strategies set, S.  
Let U be a payoff function. Then, the payoffs of players A and B 
are u=UA(x) and v=UB(x), respectively. In cooperative games, 
individual players will bargain in order to maximize their payoffs 
in cooperation with each other.    
The bargaining function is defined as 
 )')()(')(()( vUuUB BA −−= xxx           (13) 

where U is the utility function, and u’ and v’ are arbitrary utility 
function values, respectively. Thus, each player will find his best 
strategy, x, such that the payoff becomes maximum, maintaining 
the positive sign in each term of Eq. (13). Introducing the 
response function, f, the bargaining function is represented as 
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where fiw is the worst function value of the i-th objective function.  
Alternatively, the following bargaining function can be utilized. 
Let x1*, x2*, …, xk* be the optima determined from a single 
objective function. Then, Fiu is defined as   
 Fiu=Max [ Fi(xj*), j=1,2,…,k]           (15)  
where Fi=cifi(x) and it is treated as a constant. The bargaining 
function can be written as  
 ∏
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where xc* is the Pareto-optimum determined from the 
multiobjective function. When the weighting method is 
introduced, the following formulation should be solved to 
evaluate Eq. (16).  

xw ],...[ 21 kwwwFind =                      (17) 

)(*/)(
1

xx i

k

i
ii ffwMinimize ∑

=

                    (18) 

mjgtoSubject j ,...,1,0)( =≤x                      (19) 

where fi*(x) is the function value at the optimum only 
considering the i-th objective function. 
 
4. TWO-BAR DESIGN PROBLEM 
 

 
Fig. 1 Two-bar truss 

 
The responses of the two-bar shown in Fig. 1 are calculated as  
[2, 8] 
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where x1=l/h, x2=A/Amin, Amin=1(×645.16×10-6 m2), Aref=1, 10 ≤ 
x1≤200 (×0.0254m), and 0.1 ≤ x2≤2.5 (×645.16×10-6m2).  
The allowable stress of this structure, σa ,is 137MPa.  It is 
assumed that the tolerance of xi, ∆xi (i=1,2) is 10% of the current 

design variable, and its standard deviation σxi is ∆xi/3, and each 
variable is statistically independent, random and normally 
distributed.  
Suppose for the robust design problem, we find that the design is 
insensitive to the displacement at node 3. The design equation is 
represented as 
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where 
−

δ is the mean of the displacement at node 3. 
 First, the orthogonal array is utilized to find the design variable 
sensitive to the FRs and insensitive to the FRs, respectively. To 
determine the elements of the design matrix, the ANOVA 
(analysis of variance) is performed. The three levels are set to the 
lower bound, the average between two bounds,  and the upper 
bound of each design variable. Table 1 shows the results of the 3 
level-orthogonal array experiments. The mean and the standard 
deviation are calculated by 
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Table 1 Full combination experiment for 2 D.V. and 3 levels 

 

 

 

 

 

 

The sums of squares with respect to the mean are  Sx1=33.96, 
Sx2=37.59, respectively.  On the contrary, the sums of squares 
with respect to the standard deviation are Sx1=9.56, Sx2=47.93, 
respectively. Thus, the non-diagonal elements in Eq. (24), A12 
and A21, cannot be neglected. It is concluded that this design 
problem is a coupled design problem. The multiobjective 
function to obtain the robust design for this problem is 
represented as  

Minimize [f1(X)=δ, f2(X)=s, f3(X)=weight]         (27) 

Subject to  σi-σa ≤ 0 , i=1,2                                 (28) 

The above formulation is solved by 1) weighting method, 2) 
global criterion method, 3) bargaining function of Eq. (16) and 
global criterion method, 4) bargaining function of Eq. (16) and 
weighting method and 5) bargaining function of Eq. (14). The 
initial values of the design variables are x1=200 and x2=2.5.  
Each case is solved by the modified feasible direction method. 
The value, p , is set to 2 in the global criterion method. In the 
global criterion method, the objective is defined as  

No.        x1 
     (in) 

x2 
(in) 

        δ 
       (in) 

      s 
(in) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
10 
10 
105 
105 
105 
200 
200 
200 

0.1 
1.3 
2.5 
0.1 
1.3 
2.5 
0.1 
1.3 
2.5 

11.936 
0.920 
0.479 
0.485 
0.037 
0.019 
1.358 
0.104 
0.054 

3.988 
0.024 
0.007 
1.700 
0.010 
0.003 
9.054 
0.054 
0.014 
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The results are summarized in Table 2. The optimum of Case 2 is 
the same as Case 3, and the optimum of Case 1 is close to that of 
Case 4.  The comparison of the bargaining function value 
showed that Case 3 and Case 4 are better than Case 1 and Case 2. 
However, Case 5 decreases the weight only, although each 
function is scaled. 
 

Table 2 Solutions for multi-objective optimization 
 

 

 

 

 
 
5. CONCLUSIONS 
The following statements are summarized. First, the first axiom 
is introduced to evaluate the design quality. That is,   the design 
equation is composed to investigate the relationship between FRs 
and DPs. The design matrix is defined by calculating the sum of 
squares of mean and standard deviation. Second, for an 
uncoupled or a decoupled design problem, the design variable 
sensitive to mean and the design variable sensitive to standard 
deviation are divided. Then, each optimum is obtained by 
solving each optimization formulation. That kind of design 
problem is ideal case, considering the axiomatic design concept. 
Third, for a coupled design problem, its robust design is 
determined by solving multiobjective function. In this stage, the 
bargaining function is successfully applied. As a future work, the 
practical structural design will be applied.   
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Case x1, x2 
     (in) 

δ  
(in) 

         s 
       (in) 

    weight 
(lbf) 

1 
2 
3 
4 
5 

62.18, 2.38 
59.25, 1.82 
59.53, 1.83 
64.38, 2.47 
71.57, 0.65 

0.02242 
 0.03071 
0.03043 
0.02096 
0.07370 

0.00196 
0.00334 
0.00331 
0.00182 
0.02698 

158.6 
119.7 
120.4 
166.3 
45.4 


