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Abstract We consider object tracking and monitoring
implemented via the use of distributed wireless sensor net-
works. We view the signal processing and communications
operations performed in such networks, in conjunction with
the time constraints imposed on their signal processing
objectives and the limited life-spans of their sensors.
We identify some of the object identification and network
monitoring functions that are embedded in such systems. We
subsequently focus on a core algorithm whose various man-
ifestations may serve effectively a variety of network func-
tions, and propose its novel application for image and sound
object tracking. We also propose a new distributed version of
the algorithm for the monitoring of data rates in the network.

Keywords sequential detection of change; object identifi-
cation; distributed network rate monitoring

1 Introduction

Object tracking and monitoring is currently extensively
implemented by distributed wireless sensor networks whose
architectures, operations, and performance demands are
dictated by the tracking and monitoring objectives, but are
also constrained by the characteristics and limitations of the
environment. Within the statistical inference domain,
the tracking and monitoring objectives are classified
as either hypothesis testing (detection) or parameter
estimation or estimation of the acting data generating
process, and the pertinent performance criteria include
decision/estimation accuracy and convergence rate, where
detection/estimation accuracy is generally monotonically
increasing with the number of observation data processed
[26]. When time constraints are imposed on high accuracy
detection/estimation, the consequence is increased required
overall data rates. At the same time, in the distributed
wireless networks considered, observation data may be
collected and processed by life-limited nodes, whose
life-span is a function of the data rates they process
[1,2,5,6,15,16,21,22,23,33,38,40,39]. Thus, required

overall data rates, in conjunction with rate-dependent node
life-spans, generally necessitate network-architecture and
network-operations control/adaptations, so that possible
nodes’ survivability limitations do not interfere with the
required network overall performance [15,16,23,33,40,
39]. Since the network-architecture and network-operations
adaptations are functions of the acting data rates, it is
eminent that data rates are then monitored and that rate
changes are detected accurately and rapidly.

There has been a plethora of research efforts within the
object tracking area, exemplified by the references [8,9,
17,19,20,25,35,37,41,47], while related marginal issues
are addressed in [20,29], and where some recent results
in object identification can be found in [18]. Concurrently,
transmission and routing algorithms that are appropriate for
the distributed wireless sensor network environment have
been proposed in [11,12,14,15,16,21,33,34,48], while
some other related network issues are addressed in [44,
45,46,49], and where network performance monitoring is
considered in [31].

The operations performed within an Object Track-
ing/Monitoring (OTM) Distributed Wireless Sensor
Network (DWSN) are many and diverse, and include
signal processing as well as communications algorithms.
In this paper, we focus on a core algorithm whose various
implementations may be deployed at various components
of the OTM-DWSN operations. We present and analyze a
distributed version of the algorithm for data rate monitoring.

The organization of the paper is as follows: in Section 2,
we present some related work. In Section 3, we present the
general OTM-DWSN model considered and discuss some
of its operations. In Section 4, we present the core algorithm
and summarize its properties. In Section 5, we present some
implementations of the core algorithm within the OTM-
DWSN system, including a new distributed algorithmic
form for network data rate monitoring. In Section 6, we
draw some conclusions.
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2 Related work

In this paper, we focus on a core algorithm and present
several of its manifestations and applications, including
audio object tracking, object identification from images,
and distributed network traffic monitoring. For audio
tracking of an object, the audio signature of the object
must be monitored and detected accurately when present,
while embedded in noise. To attain this objective, the
noise and the audio signature of the object must be first
modeled. Based on the latter model, algorithms that detect
accurately changes from absence to presence of the object
audio and vice versa must be designed and deployed.
Several researches have been invested in this area [42,43].
While [43] presents a statistical model-based voice activity
detection, [42] introduces a new choice activity detection
method based on conditional MAP criterion. The difference
between the proposed algorithm and the referenced papers is
the robustness of the proposed algorithm against the noise;
see Section 5.1.2 and [18]. For automatic target detection
(airplanes) in images, several related papers have covered
this area, for example, [27] presents a technique of how the
airplanes in airports could be detected in satellite images
using an approach based on visual saliency computation
and symmetry detection. The paper [36] presents airplane
detection and tracking technique using wavelet features and
SVM classifier. The object tracking is considered in this
paper as a classification problem by labeling the object in
the first name. Next, SVM was trained using the training
vectors obtained from image frames. The paper [7] presents
the region-based airplane detection in remotely sensed
imagery. It is a two-step method of target detection: first,
segmentation is performed on the original image, and then
the image regions are used to determine which region
belongs to candidates of target area. However, the proposed
algorithm could detect objects such as airplanes not only
from satellite images but also from real-time videos. In
addition to that, it could detect objects even when the image
is corrupted by extra noise (low SNR), as shown in Figures
5 and 6. For network traffic monitoring case, we focus on
the DWSN dynamics, induced by possible mobility as well
as expiration of the ENs. Referring to the discussion and
Figure 1 in Section 3, the EN mobility and/or expiration
induces user population changes within the clusters of
the DWSN; thus, necessitating the deployment of random
access (RA) algorithms for transmission to the AFNs [12,
31,40,39].

3 The OTM-DWSN general model

The architecture of the OTM-DWSN model considered is
shown in Figure 1 and consists of elementary nodes (ENs),
elementary-node clusters and a backbone network of cluster
heads and a fusion center, where the ENs are the sensors
that may be mobile. We will respectively term the cluster

Figure 1: The architecture of the OTM-DWSN model.

heads and the fusion center as aggregation and forwarding
nodes (AFNs) and base station (BS). The objective of the
DWSN architecture is the pursuing of a set of signal pro-
cessing operations (for detection, identification, etc.) spec-
ified by the OTM objective. Given the pre-determined sig-
nal processing objectives, the ENs, AFNs, and BS perform
the following functions: (a) the ENs are grouped into dis-
tinct clusters, where each cluster contains a single AFN.
Each EN collects local data and transmits them to its local
AFN, via an appropriate protocol (mainly random access in
such topologies) [11,12,34,39]. The ENs may generally be
low-cost and low-energy; thus, short-life devices. (b) Each
AFN collects the data sent by its local ENs and processes
them, using an operation determined by the network signal
processing objectives; it also receives processed data sent
by other neighboring AFNs. The AFN then processes the
compounded processed data, utilizing an operation that is
determined by the network signal processing objectives, and
transmits the outcome to selected neighboring AFNs or the
BS. The AFNs have processing capabilities and are devices
with energy and life-spans that are much higher than those
of the ENs; their life-spans and energy may still be limited,
however. (c) The BS fuses data transmitted to it by neighbor-
ing AFNs, utilizing an operation that is determined by the
network signal processing objectives. The BS has practically
unlimited life-span.

When the cluster populations are time-varying due to
ENs mobility and/or expirations, they transmit to their
assigned AFN via a random access (RA) protocol [31,
33,40,39]; the life-span of each EN is a function of the
channel monitoring and the retransmissions it performs,
in compliance with the rules of the deployed RA [40,39].
Operations are performed at all nodes of the backbone
network: at the AFNs and the BS. The nature of the
operations is determined by the signal processing operations
performed in the network; as dictated by the OTM, the
environment that generates the data and the data rates [33].
At the same time, the energy consumption of the AFNs
is a function of the data rates they receive and produce,
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Figure 2: The architecture of each EN and CH.

and the complexity of the operations they perform. Each
AFN performs operations on its input data rates to produce
the data rates it outputs to neighboring AFNs and/or the
BS [39]. The OTM imposes strict delay constraints. Thus,
the network is required to complete its signal processing
operations within given fixed T time units. The general
structure of each EN and CH is shown in Figure 2. During
this time period, some ENs generally expire, since their life-
spans may be generally only fractions of the time period
T . This causes changes in the cluster data rates and thus
induces dynamics that may dictate rate allocations across
the AFNs and/or network architectural configurations [33,
40,39]. Such dynamics are dictated by the specific changes
of cluster rates, in conjunction with the characteristics of the
deployed RA within its stability region. It is thus important
that the cluster rates be continuously monitored.

The OTM problem incorporates various specific signal
processing components, including automated object identi-
fication in noisy images and automated recognition of audio
signal activity in noise, among others. In this paper, we will
present a core sequential algorithm whose specific various
implementations can address effectively these components,
as well as the cluster rate monitoring problem. The various
implementations of the algorithm are dictated by the models
representing the acting data processes in each application.

4 The core algorithm

The core algorithm presented in this section is the sequential
detection of change algorithm that was first presented in
1954 by Page [30], for detecting a change from a given
memoryless and stationary process to another such given
process. In 1971, Lorden [28] proved the asymptotic
optimality of Page’s algorithm. Later, Bansal et al. first
proved asymptotic optimality of the algorithm for processes
with memory and satisfying mixing conditions [3], and
then provided outlier resistant generalizations of their
algorithm [4]. Burrell et al. extended the algorithm to detect
multiple repeated changes among a set of processes and
proved asymptotic optimality, first when the processes are
parametrically defined [10], and then when the processes
are contaminated by data outliers [32]. The algorithm has
also been used in various networks applications [12,13,14,
33,39], and has recently been used in object recognition in
images and in detection of voice activity [18]. Below, we
present a summary of the extended algorithm in [10].

Let the process which initially generates the data be
known to be the process μ0, called hypothesis, H0. Let it be
possible that a shift to any one of m− 1 distinct processes
μi; i= 1, . . . ,m−1, called hypotheses Hi, i= 1, . . . ,m−1,
may occur at any point in time, where if a μ0 to μi shift
occurs, then the process μi remains active thereafter. The
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objective is to detect the occurrence of a μ0 to μi shift, as
accurately and as timely as possible, including the detection
of the process μi which μ0 changed to. Let us denote by
fi; i = 0,1, . . . ,m− 1, the density or probability functions
induced by the processes μi, i = 0,1, . . . ,m− 1, and let
us denote conditional density or probability functions
similarly. Then, the following algorithm has been proposed
and analyzed in [10], where xn

1 = [x1, . . . ,xn].

4.1 Extended algorithm

(a) Select a threshold δ0 > 0.
(b) Have m− 1 parallel algorithms operating. The ith

algorithm, i = 1, . . . ,m− 1, is monitoring a μ0 to μi shift.
T 0i
n (xn

1 ) denotes the operating value of the ith algorithm at
time n, given the observation sequence xn

1 . The operating
value T 0i

n (xn
1 ) is updated as follows:

T 0i
0 ≡ 0,

T 0i
n (xn

1 ) = max

(
0,T 0i

n−1

(
xn−1

1

)
+ log

fi
(
xn|xn−1

1

)
f0
(
xn|xn−1

1

)
)
.

(1)

(c) The algorithmic system stops the first time n when
either one of the m−1 parallel algorithms crosses the com-
mon threshold δ0. If the ith algorithm is the one that first
crosses the threshold, then it is declared that a μ0 to μi shift
has occurred.

The asymptotic optimality of the algorithm has been
proven in [10], where the expected time for a correct
decision is asymptotically the fastest among all algorithms
that satisfy a specific false alarm constraint. We note that
the algorithm is characterized by low complexity. When the
processes monitored are memoryless, the algorithm also
requires no memory.

A re-initialization extension model is then assumed as
follows. At any point in time, let the data be generated by
one of m mutually independent and parametrically defined
stochastic processes {μi; i = 0,1, . . . ,m− 1}. At any point
in time, the acting process may shift to either one of the
remaining processes, in an equally probable fashion. The
objective is to detect such shifts as accurately and as timely
as possible. The algorithm below was then proposed.

4.2 Reinitializing algorithm

With each process μi, we associate a positive threshold
value δi. Let it be known that at time zero the process
μ0 is acting. Then, at time zero, the extended algorithm
is deployed, with common operating threshold δ0. Let T1

denote the time instant when the above algorithm stops,
and let a μ0 → μi shift be decided at T1. Then, at T1, the
μ0 → μi decision is accepted and the extended algorithm
is deployed again, with a common operating threshold δi,
to monitor a shift from the process μi to either one of the
remaining processes. The common operating threshold δi

Figure 3: False alarm & power curves for the {μk →
μj ; j �= k} monitoring system. Threshold values ηk < η′k.

is associated with the starting process μi. In general, let
{Tl}l≥0 denote the sequence of decision/re-initialization
time instants induced by the algorithm, with T0 � 0. Then,
at Tl it is decided that some process μj starts acting, and
the extended algorithm with a common operating threshold
δj is immediately deployed, to monitor a change from
μj to either one of the remaining processes. Within the
time interval [Tl,Tl+1), it is decided that the process μj is
continuously acting.

Asymptotic performance and stability of the reinitializ-
ing algorithm has been studied in [10]. As the Kullback-
Leibler distances among the involved processes increase, so
does the speed and the accuracy of the algorithms: they can
then detect accurately rapid changes.

4.3 Threshold selection

The implementation of the algorithm is clearly determined
by its non-asymptotic performance: its performance for
finite values of the thresholds {δi}. Given a threshold value
δk, the performance of the μk to μj monitoring algorithm
is basically characterized by two-time curves: the power
and false alarm curves, denoted respectively by βkj(r) and
αkj(r), where r denotes the discrete time or number of data
samples collected, and where the following holds:

βkj(r): the probability that the μk → μj monitoring algo-
rithm crosses threshold δk before or at sample size r,
given that the acting process is μj throughout, named
power curve.

αkj(r): the probability that the C monitoring algorithm
crosses threshold δk before or at sample size r, given
that the acting process is μk throughout, named false
alarm curve.

In Figure 3, we plot the behavior of the power and false
alarm curves, for two different values, ηk and η′k, of the com-
mon threshold δk used by the {μk → μj ; j �= k} monitoring
system, where ηk < η′k.
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From Figure 3, we note that as the value of the decision
threshold increases, the false alarm curve decreases, but
so does the power curve. The threshold selection for the
{μk → μj ; j �= k} monitoring system may be based on a
required lower bound for the power and a required upper
bound for the false alarm, at a given time instant r. When all
the m− 1 algorithms that monitor change from process μk

are considered, the common threshold δk may be selected
based on the following principle: at a given sample size
r, have the powers induced by the parallel algorithms be
above a predetermined lower bound, while the false alarm
induced by each algorithm remains below a predetermined
upper bound, where the existence of such a threshold is
determined by the selected values of these upper and lower
bounds; as the Kullback-Leibler distances between μk

and each one of the {μj ; j �= k} processes increase, the
simultaneous attainability of lower false alarms and higher
powers increases as well [3,4,10,26,28]. An alternative
principle for the selection of the common threshold δk is the
following: at a given sample size r, maximize the distance
between false alarm and power induced by the minimum
Kullback-Leibler distance pair (μk,μj); j �= k, where the
latter pair induces the closest to each other power and false
alarm curves within the {μk → μj ; j �= k} monitoring
system.

Below, we express the specific forms that the algorithm
in (1) takes for three special cases of data generating
stochastic processes. As we will discuss in Sections 4.4–
4.6, these special cases correspond to three important
operations within the OTM-DWSN system.

4.4 The Bernoulli model

We assume that binary sequences xn
1 are generated by

independent Bernoulli trials, where the Bernoulli parameter
for P (xi) = 1 may shift among two different values, p and
q, where p > q and where the parameter p represents the
process μ1, while the parameter q represents the process
μ0. The two processes μ1 and μ0 are then memoryless with
f1(x) = px(1− p)1−x and f0(x) = qx(1− q)1−x. Denoting
by T ′(xn

1 ) the value of the μ0 → μ1 monitoring algorithm
in (1) and by T (xn

1 ) the value of the μ1 → μ0 monitoring
algorithm in (1), both at time n, in this case, we obtain in
a straight forward fashion and after appropriate scaling the
following sequential expressions:

q → p monitoring, for p > q:

T ′(xn
)
= max

{
0,T ′(xn−1)+ [xn+γ(q,p)

]}
, (2)

p→ q monitoring, for p > q:

T ′(xn
)
= max

{
0,T ′(xn−1)− [xn+γ(q,p)

]}
, (3)

where

γ(q,p) =
log (1−p)

(1−q)

log p(1−q)
q(1−p)

. (4)

It can be shown [26] that q < γ(q,p) < p. Power and
false alarm curves can be recursively computed via the
methodology shown in [26], and subsequently used for
the selection of the two algorithmic thresholds used by the
algorithms in (2) and (3), as discussed in Section 4.3.

4.5 The Poisson model

We assume that data arrivals are generated by a Poisson
process whose rate, λ, in expected number of arrivals
per time unit, may shift among a given finite set of
values. Thus, shifts among a set {μi; i = 0,1, . . . ,m− 1}
of processes is here represented by shifts among a set
{λi; i= 0,1, . . . ,m−1} of Poisson rates. Since the Poisson
processes are memoryless, the monitoring algorithm in (1)
utilizes no memory in this case. We consider fixed-length
time intervals named frames, within which the number of
arrivals are counted, and we measure time in frame units. We
then denote by nr the number of arrivals in the rth frame,
from the beginning of time, and we denote by Vkj(r) the
value of the λk → λj monitoring algorithm at the rth frame
from its beginning. After some modifications including
scaling, we then find the following sequential evolution of
the algorithm in (1) in this case, where d denotes the length
of a single frame in time units:

Poisson {λk → λj} monitoring algorithm

Vkj(r+1) = max
{

0,Vkj(r)

+(−1)ime(k,j)[skjnr+1 −dtkj
]}
,

(5)

where

ime(k,j) =

{
0, if λj > λk,

1, if λj < λk,

ζ
(
λkλj

)
�
[
λk−λj

][
log

(
λk

λj

)]−1

,

ζ
(
λk,λj

)
=

tkj
skj

.

(6)

It can be shown [12] that min(λk,λj) < ζ(λk,λj) <

max(λk,λj). The ζ(λk,λj) expression may be approxi-
mated by a rational number, as exhibited in (6), where the
integers tkj and skj are such that tkj < skj . Power and false
alarm curves can be computed recursively, as shown in [12],
to be used for algorithmic threshold selections, as discussed
in Section 4.3. We point out that when only two Poisson
processes alternate in generating the observed data, the two
algorithmic thresholds involved then in the data monitoring
were “learned”, instead, via an optimal algorithm in [14].
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4.6 The Laplacian-Gaussian hybrid model

In this model, it is assumed that the data generating process
may shift between a white zero mean stationary Gaussisn
process μ0 and a stationary memoryless process μ1 with per-
datum density function that is the convolution of the per-
datum density function of the Gaussian process μ0 with a
Laplacian density function. As induced by the algorithm in
(1), the μ0 → μ1 and μ1 → μ0 monitoring algorithms do
not require any memory then. Derivation of the per datum
density function of process μ1, derivations, and scaling [18]
finally leads to the following sequential monitoring algo-
rithms:

Given

σ: the standard deviation of the white stationary Gaussian
process μ0;

α: the parameter of the Laplacian.

Define

β � ασ, ξ � x

σ
,

h(ξ)� exp(−βξ)Φ(ξ−β),

Φ(ξx) =

∫ x

−∞

1
σ
ϕ(u)du,

ϕ(u)� 1√
2π

exp

(
− u2

2

)
,

(7)

where the signal-to-noise ratio (SNR) here is

SNR =
2

σ2α2 =
2
β2 . (8)

Then, the μ0 → μ1 monitoring algorithm evolves sequen-
tially as

T
(
xn
)
= max

[
0,T

(
xn−1)+1+

[
ln

β
√

2π
2

+
β2

2

]−1

×
[
ξ2

2
+ ln

{
h(ξ)+h(−ξ)

}]]
.

(9)

The μ1 → μ0 monitoring algorithm evolves sequentially as

T
(
xn
)
= max

[
0,T

(
xn−1)−1−

[
ln

β
√

2π
2

+
β2

2

]−1

×
[
ξ2

2
+ ln

{
h(ξ)+h(−ξ)

}]]
.

(10)

Recursive integral equations can be derived that allow the
numerical computation of the power and false alarm curves
to be subsequently used in the selection of the thresholds
used by the algorithms in (9) and (10); see [18].

5 Experimental results and analysis of the core algo-
rithm

In this section, we present two implementations of the core
algorithm in Section 4, within the OTM-DWSN system:
one used for the visual and audio tracking of an object, and
another for the monitoring of cluster rates in the network.

5.1 Visual and audio tracking of a moving object

The tracking of a moving object may be attained via the
processing and monitoring of both sequentially obtained
images and progressively emanating sound from the object,
as detected by the various network sensors. Some of these
sensors may be on the ground, some may be robotic swarms,
while others may be satellites. In this section, we present
an algorithm that may be used in visual tracking and an
algorithm that may be used for audio tracking.

5.1.1 Visual tracking

To track a moving object from sequentially obtained images,
the object must be first clearly identified and outlined in
each image. In this section, we propose a manifestation
of the core algorithm in Section 4, for the satisfaction
of this objective. Specifically, we propose the adoption
of a Bernoulli model and the subsequent deployment of
the Bernoulli model algorithm in Section 4.4, for the
satisfaction of this objective. The proposed approach
involves the following steps:

(a) the obtained images are converted to black and white;

(b) from training data, the range of white versus black is
decided and each pixel is subsequently represented by a
binary number: 1 for black and 0 for white;

(c) from training data, the percentage range of identity-1 or
equivalently identity-0 pixels in the background versus
those within the object is quantified. Then, the margins
of these ranges that are closest to each other, q and p, are
determined;

(d) the Bernoulli model algorithms in Section 4.4, designed
at the p and q values discussed in (c), are subsequently
deployed in real time, to clearly outline the position
of the object in each of the sequentially obtained
images. The algorithms are implemented on sequentially
scanned pixels, in the reinitializing mode: as soon as
a p → q shift is detected by the p → q monitoring
algorithm, the q → p monitoring algorithm is deployed
to detect such shift, and so on.

The Bernoulli model algorithms were deployed to
identify and clearly outline airplanes, from images obtained
by satellites and subsequently corrupted by Additive White
Gaussian Noise (AWGN). Figure 4 exhibits the originally
obtained images, while Figure 5 shows an example of the
effect due to the AWGN corruption, and Figure 6 exhibits
the noisy images in black and white.
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Figure 4: Original images.

Figure 5: Image on left as that in Figure 4. Image on right corrupted by AWGN.

From training data, the ranges of identity-1 pixel
percentages within the plane figures versus the background
were found to be (0.045, 0.08) and (0.2, 0.4), respectively.
The p and q values for the design of the two algorithms
in Section 4.4 were thus selected equal to 0.08 and 0.2,
respectively, where 0.08 → 0.2 signifies a change from
airplane figure to background and where 0.2 → 0.08
represents a change from background to airplane figure.
We selected the algorithmic thresholds following the
methodology explained in Section 4.3, requiring false alarm
and power bounds, respectively equal to 0.05 and 0.95, for
sample size 100. For the 0.08 → 0.2 algorithm, the selected
threshold was 0.2, while for the 0.2 → 0.08 algorithm,
the selected threshold was 12.5. In Figure 7, we exhibit

the images obtained by the Bernoulli model algorithms.
The accuracy of the algorithm is exhibited by comparing
Figure 7 with Figure 6.

5.1.2 Audio tracking

For audio tracking of an object, the audio signature of the
object must be monitored and detected accurately when
present, while embedded in noise. To attain this objective,
the noise and the audio signature of the object must be
first modeled. Based on the latter model, algorithms that
detect accurately changes from absence to presence of
the object audio and vice versa must be designed and
deployed. In this section, we model the noise as additive,
white, stationary, and Gaussian, and we model the object
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Figure 6: Noisy images in black and white.

Figure 7: The images after being processed by the bernoulli model algorithms.

audio by mutually independent and identically distributed
activity intervals with amplitude distribution described by
a Laplacian density function (a model frequently adopted
for speech [24,43]. Consequently, we deploy the algorithms
in the Laplacian-Gaussian hybrid model of Section 4.6 to
detect changes from silence to audio object activity and vice
versa.

In consistency with the works in [24,43], we selected
the standard deviation of the noise equal to 0.0394 and the
Laplacian parameter equal to 0.99. Using the methodology
in Section 4.3, we required false alarm and power bounds
respectively equal to 0.05 and 0.95, for sample size 100.
We subsequently selected algorithmic threshold values

equal to 0.3 and 0.05, for the detection of change from
audio signature presence to absence versus audio signature
absence to presence, respectively. We tested the algorithms
for various values of the signal-to-noise ratio (SNR), as
defined by (8) in Section 4.6. Figure 8 exhibits noisy audio
with different SNRs, while Figures 9 and 10 show the
performance of the audio recognition algorithms regarding
accuracy. We notice that the accuracy improves as the
SNR increases, while always remaining significantly good.
In [18], comparisons with the methods in [24,43] were
made, showing consistent outperforming of the algorithm
proposed in this paper. The comparison results are not
included here due to lack of space.
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Figure 8: Noisy audio with SNR equal to 25 dB and 5 dB, respectively.

Figure 9: Algorithmic accuracy for SNR equal to 25 dB.

5.2 DWSN rate monitoring

In this section, we focus on the DWSN dynamics, induced
by possible mobility as well as expiration of the ENs. Refer-
ring to the discussion and Figure 1 in Section 3, the EN
mobility and/or expiration induces user population changes
within the clusters of the DWSN; thus, necessitating the
deployment of random access (RA) algorithms for transmis-
sion to the AFNs [12,31,40,39]. Assuming starting sym-
metric DWSN topology, where all clusters have identical EN
populations randomly distributed, the per-cluster cumulative
data generating process may be modeled as homogenous
Poisson, where the Poisson rates across different clusters are
identical. In [40,39], a specific RA per cluster is deployed,
whose throughput-delay characteristics determine the range
(λ0, λ1) of Poisson rates within which the RA attains its
best performance. Consequently, an architectural reconfigu-
ration algorithm, facilitated by a rate monitoring algorithm
(RMA), has been deployed, [40,39], that reconfigures the

DWSN topology, when so dictated by the RMA, to main-
tain the system symmetry and the Poisson per-cluster rates
within the (λ0, λ1) range. In [40,39], the RMA is deployed
idependently by each AFN in the topology (see Figure 1)
and decides sequences of consecutive λ0 → λ1 and λ1 → λ0

shifts, where the decisions of the different RMAs are com-
municated to the BS via the backbone network that connects
the BS with the AFNs. In this section, we will present a
Distributed Rate Monitoring Algorithm (DRMA), instead,
that detects synchronous sequences of consecutive λ0 → λ1

and λ1 → λ0 shifts, across all clusters in the DWSN.

5.2.1 The DRMA operations and asymptotic performance

The idea here is that, since the system symmetry is main-
tained by the architectural reconfiguration algorithm in [40,
39], the identical per-cluster rates may by monitored via a
distributed algorithm, where decisions of per-cluster RMAs
are fused either at the BS or at one of the AFNs, named
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Figure 10: Algorithmic accuracy for SNR equal to 5 dB.

Decision AFN (DAFN), and where the BS versus the DAFN
respectively makes the final decisions about shifts between
the rates λ0 and λ1. If the BS makes the final decision, it
does not contribute local data observations to it. If, on the
other hand, the final decision is made by some DAFN, its
local data observations contribute to the latter decision. The
identical RMAs deployed will be as those in Section 4.5, for
m = 2. The DRMA, on the other hand, is presented below,
where, for generality purposes, we consider the case where
the final decision is made by a DAFN; the final decision
being made by the BS is a special case of the former, then.
We assume that all EN transmissions are digital and packe-
tized.

As in Section 4.5, we consider consecutive time
frames whose length in time units is d. We then denote
by gj(n1, . . . ,nq), j = 0,1, the joint distribution of local
(from its local ENs) packet arrivals at the DAFN in q

consecutive frames, as generated by the process μj , where
ni is the number of arrivals in the ith frame and where μj ,
j = 0,1, is Poisson with rate λj . Let the number of the
remaining AFNs be N , indexed from 1 to N , and let ui,1−j ,
j = 0,1, i= 1, . . . ,N , be defined as follows:

ui,1−j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if the ith AFN decides that

the process μ1−j is active,

0, if the ith AFN decides that

the process μj is active.

(11)

We then propose a Distributed RMA (DRMA) whose only
difference from the centralized RMA lies in the updating log

likelihood step in (1), Section 4. Indeed, we propose that the
log ratio in (1) be substituted by the updating step below:

N∑
i=1

wiui,j + log
gj(nr+1 | n1, . . . ,nr)

g1−j(nr+1 | n1, . . . ,nr)
, (12)

where {wi} are generally constants whose objective is to
weigh the contribution of the various RMAs according to
their respective performance characteristics. Let αi and 1−
βi denote respectively the false rate, in percentage of false
decisions, and the power rate, in percentage of correct deci-
sions, as induced by the RMA employed by the ith neigh-
boring node. Then, drawing from some parallelisms with the
models considered in [14], we conclude the following form
of the set {wi}:

wi = log
(1−βi)(1−αi)

βiαi
; i= 1, . . . ,N. (13)

When the processes that generate the arrivals are Poisson,
the log likelihood ratio in (12), after transformation and scal-
ing, is as the updating step in expression (5), Section 4.5.

When the final monitoring decisions are being made by
the BS, no local data are collected and the DRMA. If then
the RMAs are also identical, as assumed in this section, the
updating step in (12) takes the following form after normal-
ization:

wN−1
N∑
i=1

ui,j , (14)

where α and 1 − β represent the false alarm rate and the
power rate per neighboring node, respectively, and where
then w = log[[(1−α)(1−β)]/αβ].
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We note that the weights {wi} in (13) are positive if and
only if the false alarm rate is less than the power rate. We
also note from (12) that the decisions of a neighboring RMA
contribute then positively to the acceleration of a g1−j → gj
shift decision (by increasing the size of the updating step),
when these decisions point to the μj process as being active.
The asymptotic performance characteristics of the DRMA
are included in the appendix, where the asymptotic superior-
ity of the DRMA, in comparison to the RMA, is proven, and
where the special case of the BS making the final decision
is studied as well.

5.2.2 Numerical evaluations

To test the DRMA numerically, we adopted a specific traf-
fic and transmission model. We specifically assumed that
the Poisson traffic generated by the ENs consists of mes-
sages whose length is random and exponentially distributed,
with fixed average length throughout the DWSN. We then
assumed that the messages are queued at either the DAFN
or the BS (depending on which one is the acting imple-
mentation case), and are subsequently transmitted through
a transmission channel in a Time Division Multiple Access
(TDMA) fashion, one packet per frame for each transmitted
message, where the frame lengths are equal to d time units,
as in expression (5), Section 4.5, and where the percentage
of each frame capacity dedicated to transmissions equals the
rate (one of the λ0 or λ1 rates) decided by the DRMA. Since
the DRMA induces some false decisions, the allocated to
transmissions capacity per frame may cause either wasted
capacity or traffic rejections: assuming λ0 < λ1, if λ0 is true
and λ1 is decided, excessive frame capacity allocation will
cause capacity waste, while if λ1 is true and λ0 is decided,
insufficient frame capacity allocation will cause traffic rejec-
tions. The performance metrics for the DRMA are rejection
rates, wasted capacity rates, and expected delays of the suc-
cessfully transmitted messages.

We finally modeled the actual time periods, in time units,
during which each of the two Poisson message rates, λ0

and λ1, are acting as geometrically distributed. We specifi-
cally assumed that the distribution of the time period during
which a given rate λj is continuously acting is geometric,
having the form

Qi(k) = (1−ρi)
−1ρk−1

i , k ≥ 1,

where k represents the number of time slots. The expected
time E{li} during which λj is continuously acting is thus,

E{li}= (1−ρi)
−1

and the average fraction of time γi for the λj activity is

γi =

[
1∑

k=0

E{lk}
]−1

E
{
li
}

=

[
1∑

k=0

(
1−ρk

)−1

]−1(
1−ρi

)−1
, i= 0,1.

Assuming that the rates are ordered as λ0 < λ1, the γi’s are
selected ordered as γ1 < γ0. Then, for some constant C >
max{ 1

γ0
, 1
γ1
}, the ρi values are determined as

ρi = 1− (Cγi
)−1

, i= 0,1.

For ease in graphic representation, a geometric structure is
adopted in the selection of the γi’s. Specifically, for some
constant α, 0 ≤ α≤ 1, the γi’s are generated as follows:

γ0 = γ0(α) =
(
1−α2)−1

(1−α),

γ1 = γ1(α) = αγ0(α) = (1−α2)−1(1−α)α.
(15)

Thus, for any α value, the generated γi’s are such that γ1 <
γ0 and γ0+γ1 = 1. The following conclusions can be drawn
from (15):

(a) γ0(α) is a decreasing function of α;
(b) γ1(α) is an increasing function of α;
(c) in general, as α decreases, the higher rate becomes

increasingly bursty while the frequency with which the
lower rate occurs increases monotonically; as α → 0,
γ0 approaches 1. As α increases, the frequencies
of occurrence for the two different rates tend to
equalization; as α→ 1, the γi, i= 0,1, values approach
1/2.

In our simulations, we selected a frame length equal to 40
and various numbers of neighboring AFNs contributing to
the adaptation steps of the DRMA. We also selected various
pair values (λ0, λ1) of rates for the two Poisson processes
which generate the packet arrivals, as well as exponentially
distributed message lengths with various average lengths.
For the numerical results included in this paper, the selected
average message length equals 15 packets (to ensure non
insignificant message arrival rates), while the chosen pairs
of message arrival rates are (0.2, 0.6) and (0.2, 0.8). We first
considered 4, 8, and 12 AFNs feeding a DAFN which also
utilizes local data, via expression (12). We also simulated
the case where the DRMA is implemented by the BS, via
expression (14), utilizing inputs from 24 neighboring AFNs.
We selected the threshold values via the methodology in
Section 4.3.

Our results are exhibited in Figures 11 to 16, where the
performance of the DRMA is compared with that of the
RMA: Figures 11, 12, and 13 correspond to the pair (0.2,
0.6) of rates, while Figures 14, 15, and 16 correspond to the
pair (0.2, 0.8) of rates. From the figures we observe that,
as compared to the RMA and as predicted by the theorems
in the appendix, the DRMA generally improves delays at
the expense of increased traffic rejection and wasted capac-
ity rates. As the Kullback-Leibler distance between the two
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Figure 11: Average message length 15. Rate pair (0.2, 0.6).
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Figure 12: Average message length 15. Rate pair (0.2, 0.6)
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Figure 13: Average message length 15. Rate pair (0.2, 0.6).

Poisson processes increases (the case of the (0.2, 0.8) pair),
however, the DRMA implemented by a DAFN, that incor-
porates local data, improves delays dramatically at almost
no cost in traffic rejection and wasted capacity rates. When
the DRMA is implemented by the BS and does not utilize
local data (case of 24 neighboring nodes), the highest delay
gain is obtained, but the highest penalties are paid as well,
regarding traffic rejection and wasted capacity rates.

6 Conclusions

Considering the environment of an object tracking and mon-
itoring distributed wireless sensor network, we focussed on
a core algorithm and presented several of its manifestations
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Figure 14: Average message length 15. Rate pair (0.2, 0.8).

0.1 0.2 0.3 0.6 0.7 0.8 0.90.1 0.4 0.5

Alpha

R
at

es

Capacity waste rates

Figure 15: Average message length 15. Rate pair (0.2, 0.8).
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Figure 16: Average message length 15. Rate pair (0.2, 0.8).

and applications, including object identification from
images, audio object tracking, and distributed network
traffic monitoring. For the latter application, we proposed
and analyzed a distributed variation of the algorithm. In
all cases, we included numerical examples and evaluations.
The core algorithm is highly effective and robust, while its
applications are also numerous.

Appendix A Performance characteristics of the DRMA
Let N1−j,j , j = 0,1, denote the extended stopping variable induced by
the DRMA algorithm with updating step number as in (12), Section
4. Let also I1−j,j denote the Kullback-Leibler number of the process

μj with respect to the process μ1−j . Let N (i)
1−j,j , j = 0,1, denote the

extended stopping variable induced by the RMA deployed by the ith



International Journal of Sensor Networks and Data Communications 13

neighboring AFN and let us define

ρi,k|j ≡
E{N (i)

k,1−k|μj}
E{N (i)

k,1−k|μj}+E{N (i)
1−k,k|μj}

, k = 0,1, j = 0,1. (A1)

Then, the following theorem can be expressed.

Theorem A1. Let the processes {μj , j = 0,1} be stationary, ergodic,
mutually independent, and satisfying the general mixing conditions (A)
and (B) in [10]. Then, the asymptotic performance of the DRMA is as
follows:

E{N1−j,j |μj} ≈ logη1−j
∑N

i=1 wiρi,j|j + I1−j,j

, as η1−j → ∞,

E{N1−j,j |μ1−j} :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≈
[

N∑

i=1

wiρi,j|1−j−Ij,1−j

]−1

logη1−j ,

if
N∑

i=1

wiρi,j|1−j > Ij,1−j

≥2−1η1−j ,

if
N∑

i=1

wiρi,j|1−j < Ij,1−j ,

as η1−j→∞.

(A2)

At the same time, the performance of the RMA is shown below:

E{N1−j,j |μj} ≈ logη1−j

I1−j,j
, as η1−j → ∞,

E{N1−j,j |μ1−j} ≥ 2−1η1−j , as η1−j → ∞.

(A3)

Proof. From the theorems in [4], we conclude that the asymptotic
conditional expected values of the stopping times are determined by the
conditional expected values of the updating step in (3). Considering the
fact that ρi,j|j = E{ui,j |μj} and ρi,j|1−j = E{ui,j |μ1−j}, the latter
expected values are equal to

N∑

i=1

wiρi,j|j + I1−j,j , conditional on μj ,

N∑

i=1

wiρi,j|1−j − Ij,1−j , conditional on μ1−j .

Then, the results in Theorem A1 follow.

The results in Theorem A1 exhibit clearly the interactive relation-
ship between the DRMA and the RMAs deployed by the neighboring
AFNs.

Comparing expressions (A2) with expressions (A3), we
observe that the DRMA is clearly superior to the RMA, when
the constants {wi} that reflect the contributions of neighboring
nodes and the parameters {ρi,j|1−j} that represent the performance

of the neighboring RMAs are such that their sum
∑N

i=1 wiρi,j|1−j

is smaller than the minimum between the two Kullback-Leibler
numbers I01 and I10. Then, as compared to the RMA, the DRMA
decreases the asymptotic expected stopping times for correct
decisions by factors of [

∑N
i=1 wiρi,0|0 + I01]

−1∑N
i=1 wiρi,0|0 and

[
∑N

i=1 wiρi,1|1 +I01]
−1∑N

i=1 wiρi,1|1, respectively, while it maintains
the exponentially longer asymptotic expected times for erroneous
decisions.

We will conclude with an asymptotic result for the case where the
DRMA-computing node is the BS. Then, no local data are collected

and the DRMA updating step in (12) takes the following form after
normalization:

wN−1
N∑

i=1

ui,j ; (A4)

where α and 1−β represent the false alarm rate and the power rate per
neighboring node, respectively, w = log[[(1−α)(1−β)]|αβ].

We now present another theorem.

Theorem A2. Let the processes {μj , j = 0,1} be as in Theorem
A1. Let us then consider the DRMA with updating step as in (A4).
Let the N neighboring nodes be independent and identical, resulting
in identically distributed and independent variables {ui,j}. Let then
ρj|j � ρi,j|j , for all i, and ρj|1−j � ρi,j|1−j , for all i, where ρi,j|j and
ρi,j|1−j are as in Theorem A1. Then, one has

E{N1−j|j |μj} ≈ logη1−j

wρj|j
, as η1−j → ∞, (A5)

E{N1−j|j |μ1−j} ≈ logη1−j

wρj|1−j

, as η1−j → ∞, (A6)

P

(

N1−j,j = ceil

(
η1−j

wρj|j

)

| μj

)

−−−→
N→∞

1, for finite η1−j , (A7)

P

(

N1−j,j = ceil

(
η1−j

wρj|1−j

)

| μ1−j

)

−−−→
N→∞

1, for finite η1−j . (A8)

Proof. The results in (A5) and (A6) are directly from the results in
(A2) of Theorem A1, when the neighboring nodes are identical and no
local data are collected.

For N 
 1, the variable in (A4) is Gaussian, with mean wρj|j
and standard deviation wN− 1

2 [[ρj|j(1− ρj|j)]]
1
2 , given μj , and mean

wρj|1−j and standard deviation wN− 1
2 [ρj|1−j(1 − ρj|1−j)]

1
2 , given

μ1−j . As N → ∞ the standard deviations converge to zero resulting
in respective step sizes wρj|j and Wρj|1−j , with probability 1. This
gives directly the results in (A7) and (A8).

Remarks. From the results in Theorem A2, we observe that when
the DRMA-computing node is the BS, then the DRMA performance
is controlled by the parameters ρj|j and ρj|1−j . The latter parameters
represent respectively the probabilities of correct versus incorrect
decisions induced by the RMA of each AFN. For either N finite and
η1−j → ∞, or η1−j finite and N → ∞, the ratio ρj|j/ρj|1−j equals the
ratio E{N1−j,j |μ1−j,j}/E{N1−j,j |μj} of expected stopping times
induced by the DRMA.
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