
Open AccessISSN: 2090-4886

International Journal of
Sensor Networks and Data Communications

Review Article

A Compiler-Aware Framework of Network Pruning and
Architecture Search for Mobile Acceleration

Abstract
With the increasing demand to efficiently deploy DNNs on mobile edge devices, it becomes much more important to reduce unnecessary computation and increase
the execution speed. Prior methods towards this goal, including model compression and network architecture search (NAS), are largely performed independently
and do not fully consider compiler-level optimization which is a must-do for mobile acceleration. In this work, we propose NPAS, a compiler-aware unified network
pruning and architecture search and the corresponding comprehensive compiler optimizations supporting different DNNs and different pruning schemes, which
bridge the gap of weight pruning and NAS. Our framework achieves 6.7 ms, 5.9 ms, and 3.9 ms ImageNet inference times with 78%, 75% (MobileNet-V3 level),
and 71% (MobileNet-V2 level) Top-1 accuracy respectively on an off-the-shelf mobile phone, consistently outperforming prior work.

Zhengang Li*
Department of Electrical and Computer Engineering, Northeastern University, Boston, United States

*Address for Correspondence: Zhengang Li, Department of Electrical and
Computer Engineering, Northeastern University, Boston, United States; E-mail:
li.zhen@northeastern.edu

Copyright: © 2021 Li Z. This is an open-access article distributed under the
terms of the creative commons attribution license which permits unrestricted use,
distribution and reproduction in any medium, provided the original author and
source are credited.

Received: August 04, 2021; Accepted: August 18, 2021; Published: August 25,
2021

Keywords

Artificial intelligence ● Neural architecture search ● Network pruning

and architecture search ● Deep neural network

Introduction

 The growing popularity of mobile AI applications and the demand
for real-time Deep Neural Network (DNN) executions raise significant
challenges for DNN accelerations. However, the ever-growing size of DNN
models causes intensive computation and memory cost, which impedes the
deployment on resource limited mobile devices.

DNN weight pruning has been proved as an effective model compression
technique that can remove redundant weights of the DNN models, thereby
reducing storage and computation costs simultaneously [1,2]. Existing work
mainly focus on unstructured pruning scheme where arbitrary weight can
be removed as shown in and (coarse-grained) structured pruning scheme
to eliminate whole filters/channels as shown in Figures 1a and 1b [1,3].
The former results in high accuracy but limited hardware parallelism (and
acceleration), while the latter is the opposite. Recent work propose to prune
the weights in a more fine-grained manner, which can be classified into
block-based and pattern-based pruning as shown in Figures 1c and 1d
[4,5]. This kind of semi-structured pruning preserves higher accuracy while
also provides significant speedup with the assist of compiler-level code
generation techniques.

Literature Review

Another active research area is the Neural Architecture Search (NAS),
which designs more efficient DNN architectures using automatic searching
algorithms [6]. Efficient Net and MobileNetV3 is representative lightweight
net- works obtained by using NAS approaches [7,8]. Hardware aware
NAS has also been investigated targeting acceleration on actual hardware
platforms [9,10]. Recently, compiler-assisted DNN inference frame- works
have drawn broad attention from both industry and academia [11,12].
TensorFlow- Lite (TFLite) (Ten), Alibaba Mobile Neural Network (MNN) (Ali),
and TVM are representative state-of-the-art frameworks that support DNN
inference on mobile devices [13-15]. Recent work Pat DNN employs a set
of compiler-based optimizations to support specific pattern-based sparse
DNN models to accelerate the end-to-end inference on mobile devices [5].
However, it still lacks the support for a layer-wise sparse model with various
pruning schemes, which significantly limits the versatility of such framework.

Pruning a DNN model for real-time AI applications on mobile devices is
a complex task because different types of layers may prefer different types
of pruning schemes. At the same time, different layers may show different

Figure 1. Different weight pruning schemes for CONV and FC layers using
4D tensor and 2D matrix representation. (a) Unstructured sparsity, (b) Structured
sparsity (channel sparsity), (c) Fine-grained structured sparsity (block-based
sparsity), (d) Fine-grained structured sparsity (pattern-based sparsity).

Volume 10:8, 2021

Li Z

Page 2 of 5

sensitivities to the pruning ratio. Moreover, even under the similar pruning
ratio, different pruning schemes also perform different acceleration rates
due to computing parallelism. Thus, we bridge the weight pruning technique
and NAS methods and propose a reinforcement learning (RL)-based
network pruning and architecture search framework to automatically search
the best-suited pruning configurations such as per- layer pruning scheme
and pruning ratio. Moreover, we propose multiple compiler optimizations to
enable fast code generation and support inference acceleration with per-
layer pruning schemes and ratios. We incorporate the compiler optimized
model inference latency measured on the target mobile device as a reward
in the searching process, making our framework compiler-aware. Our key
contributions include:

• We bridge the gap between network pruning and NAS. We develop
a compiler-aware framework of network pruning and architecture search,
maximizing accuracy while satisfying inference latency constraint.

• We propose comprehensive compiler optimizations supporting
different pruning schemes and sparse model inference with per-layer
pruning schemes.

• We design a systematic search acceleration strategy, integrating pre-
trained starting points, fast accuracy and latency evaluations, and Bayesian
optimization.

• Our NPAS framework achieves by far the best mobile acceleration:
6.7ms, 5.9ms, and 3.9ms ImageNet inference times with 78%, 75%, and
71% Top-1 accuracy, respectively, on an off-the-shelf mobile phone.

Proposed Unified Network Pruning and
Architecture Search (NPAS) Framework

Overview of NPAS framework
It shows the proposed NPAS framework Figure 2. To take advantage of

recent NAS results and accelerate the NPAS process, we start from a pre-
trained DNN model, and go through three phases as shown in the figure.

Phase 1 replacement of mobile-unfriendly operations: Certain
operators are inefficient to execute on mobile devices (mobile CPU and
GPU). For instance, certain activation functions, such as sigmoid, swish,
require exponential computation, and can become latency bottleneck on
mobile inference. These unfriendly operations will be replaced by mobile-
friendly alternatives such as hard-sigmoid and hard-swish, with negligible
effect on accuracy.

Phase 2 NPAS scheme search: This phase uses a RL- based NAS
method to generate and evaluates candidate NPAS schemes, and finally
chooses the best-suited one. The search space includes per-layer filter
type, per-layer prunning scheme and per-layer pruning rate. To accelerate

such search, we present a meta-modelling procedure based on RL with
Bayesian Optimization (BO). A fast evaluation methods are developed,
tailored to NPAS framework. Moreover, we incorporate the overall DNN
latency constraint effectively in the reward function of NPAS scheme search,
ensuring that such constraint can be satisfied at the search outcome. The
overall DNN latency is actually measured on the target mobile CPU/GPU
based on the candidate NPAS scheme currently under evaluation. We rely
on actual measurement instead of per-layer latency modelling as many
prior NAS work. This is because our advanced compiler optimizations
incorporate a strong layer fusion beyond prior compiler work, which is
critical for efficient implementation of super-deep networks, and will make
per-layer latency modelling less accurate.

Phase 3 Pruning algorithm search: We search the most desirable
pruning algorithm to perform actual pruning and retrain the remaining
weights. The candidate pruning algorithms include magnitude-based ones,
ADMM-based algorithm etc [16,17].

Fast evaluation methods
We develop and adopt multiple tailored acceleration strategies to

facilitate fast evaluation in NPAS scheme search. To evaluate each
generated candidate scheme during search, we use the one-shot
magnitude pruning instead of using complex pruning algorithms. And we
adopt early stop- ping strategy, which only retraining pruned model for a
few epochs. Because we can distinguish the performance of a candidate
NPAS scheme by comparing the relative accuracy to other NPAS schemes.
Moreover, we overlap the compiler optimization process with the accuracy
evaluation process to further accelerate the overall evaluation process. We
use compiler code generation and actual on-device latency measurement
because of

• Higher accuracy than per-layer latency modelling due to layer fusion
mechanism, and

• The fast auto-tuning capability of compiler to different mobile devices.

Please note that the compiler code generation and latency measurement
do not need the absolute weight values. Compiler code generation is much
faster than DNN training (even a single epoch), and can be performed
in parallel with accuracy evaluation (as accurate weight values are not
needed). As a result, it will not incur extra time consumption to NPAS.

Discussion

Compiler design and optimizations
Another source of acceleration to achieve real-time inference on mobile

devices is the compiler optimizations for generating efficient execution
codes. We develop a comprehensive, compiler-based automatic code
generation method with multiple optimizations.

Support for various pruning schemes: We design a domain
specific language (DSL) to represent the DNN model, and a layer-wise
representation (LR) is used to describe each DNN layer. This provide us
the flexibility for supporting the layer-wise pruning scheme selection. We
also design compact weight storage formats for different pruning schemes
to improve the data locality.

Layer fusion mechanism: We incorporate a layer fusion technique
to fuse the computation operators in computation graph and effectively
reduce the inference latency. Our fusion based on two kinds of properties
in the polynomial calculation: computation laws (i.e., associative property,
commutative property, and distributive property) and data access patterns.
As a result, we reduce not only the memory consumption of intermediate
results, but also the number of operators.

Auto-tuning for different mobile CPU/GPU: To find the best-suited
performance-critical tuning parameters, such as the data placement on
GPU memory, matrix tiling sizes, loop unrolling factors, we use auto-

Figure 2. Overview of the proposed NPAS framework.

J Sens Netw Data Commun, Volume 10: 8, 2021

Li Z

Page 3 of 5

tuning approaches as other DNN inference frameworks like TVM. And we
incorporate Genetic Algorithm to explore the best configuration automatically
and efficiently.

Compiler-aware latency: The latency of a given candidate model is
hard to be accurately estimated based on a layer-wise latency model when
compiler optimizations are incorporated, especially with layer fusion and
auto-tuning. Thus, during the search process, we use real-world compiler
optimized latency measured on the real device instead of building a layer-
wise latency model. Since the code generation time of our optimized
compiler design is much shorter than the accuracy evaluation process, we
overlap the code generation and latency measurement with the accuracy
evaluation process; hence no extra time cost will be incurred.

Comparison with representative DNN inference acceleration
frameworks on mobile device: To demonstrate the generality and the
superiority of our compiler optimizations, we compared the inference
latency of both dense model and sparse model with other representative
DNN inference acceleration frameworks including TFLite, TVM, and MNN.
And we show the results on widely used benchmark networks including
VGG-16, ResNet-18 and MobileNet-V2. Tests are conducted on a Samsung
Galaxy S10 smartphone with mobile CPU and mobile GPU respectively. As
shown in, only based on our compiler optimization (without pruning), our
results clearly outperforms the representative frameworks on both mobile
CPU and mobile GPU (Table 1). By incorporating our network pruning
(without causing accuracy loss), the inference latency is further reduced.
The pruning rate for VGG-16, ResNet-18, and MobileNet-V2 is 8.2×, 5.3×,
and 1.8×, respectively.

Results and evaluation
Experimental setup: We use the image classification task and ImageNet

dataset to show the effectiveness of our framework, as in Figures 3 and
4. We compare our accuracy and latency results with representative DNN
inference acceleration frameworks including MNN, PyTorch Mobile, and
TFLite. The results are tested on a Samsung Galaxy S10 smartphone using
mobile CPU (Qualcomm Kryo 485) or mobile GPU (Qualcomm Adreno 640).
For Phase 1, we conduct a fast fine-tuning with 5 training epochs after
replacing the mobile-unfriendly operations (only once for the entire NPAS
process). In Phase 2, 40 Nvidia Titan RTX GPUs are used to conduct the
fast accuracy evaluation for candidate NPAS schemes concurrently.

Since we start from a well-trained model, we retrain 2 epochs for each
candidate one-shot pruned model for fast evaluation. For each candidate
model, we measure 100 runs of inference on target mobile devices and use
the average value as end- to-end latency. Thanks to our fast evaluation and
BO, using EfficientNet- B0 as starting point, the overall searching time is
15 days, where Phase 1 only takes 5 epochs, and Phase 3 takes 1.5 days.

Evaluation results
First, our compiler optimizations can effectively speed up inference

by up to 46% and 141% (on MobileNet-V3) without incorporating NPAS
compared to the currently best frame- work MNN on mobile CPU and GPU,
respectively.

With the highest accuracy (78.2% Top-1), the end-to-end inference time
of NPAS solution (385M MACs) is only 11.8ms and 6.7ms on mobile CPU
and GPU, respectively. With MobileNet-V3 level accuracy (75% Top-1); our
inference time (201M MACs) is 9.8ms and 5.9ms. With MobileNet-V2 level
accuracy (71% Top-1); the inference time of NPAS solution (147M MACs) is
6.9ms and 3.9ms. To the best of our knowledge, this is never accomplished
by any existing NAS or weight pruning work. Detailed results can be found
in Table 2 [18-21].

Framework VGG-16 ResNet-18 MobileNet-V2
TF lite 429 / 307 108 / 49.9 55.2 / 24.3
TVM 251 / 221 61.5 / 37.6 23.1 / 20.5
MNN 239 / 141 52.4 / 23.7 18.6 / 14.5
Ours (dense) 204 / 103 41.1 / 19.8 17.4 / 9.3
Ours (sparse) 37.3 / 18.1 20.6 / 9.7 9.2 / 4.3

Table 1. Mobile CPU/GPU Inference latency (ms) comparison with MNN, TVM, and TF Lite using dense (unpruned) models.

Figure 3. Accuracy vs. latency comparison on mobile GPU.

J Sens Netw Data Commun, Volume 10: 8, 2021

Li Z

Page 4 of 5

Conclusion

In this work, we propose a fine-grained structured pruning applicable to
various DNN layers, and a compiler automatic code generation framework
supporting different DNNs and different pruning schemes, which bridge the
gap of model compression and NAS. We further propose NPAS, a compiler-
aware unified network pruning and architecture search, and several
techniques are used to accelerate the searching process.

Conflict of Interest

Author has nothing to disclose.

References
1. Han, Song, Jeff Pool, John Tran and William J. Dally. “Learning both Weights

and Connections for Efficient Neural Networks.” Proc Int Conf Neural Inf
Process Syst 1 (2015): 1135-1143.

2. He, Yihui, Ji Lin, Zhijian Liu and Hanrui Wang, et al. “AMC: AutoML for Model
Compression and Acceleration on Mobile Devices.” Proc Eur Conf Comput
Vision 1 (2018): 784-800.

3. Zhuang, Zhuangwei, Mingkui Tan, Bohan Zhuang and Jing Liu, et al.
“Discrimination-Aware Channel Pruning for Deep Neural Networks.” Proc Int
Conf Neural Inf Process Sys 1 (2018): 883-894.

4. Dong, Peiyan, Siyue Wang, Wei Niu and Chengming Zhang, et al. “RTMobile:
Beyond Real-Time Mobile Acceleration of RNNs for Speech Recognition.” IEEE
Des Autom Conf 1 (2020): 11474.

5. Niu, Wei, Xiaolong Ma, Sheng Lin and Shihao Wang, et al. “PatDNN: Achieving
Real-Time DNN Execution on Mobile Devices with Pattern-Based Weight
Pruning.” Proc Int Conf Archit Support Program Lang Operating Sys 1 (2020):
907-922.

6. Zoph, Barret and Quoc V Le. “Neural Architecture Search with Reinforcement
Learning.” Int Conf Learn Representations 1 (2017): 1-16.

7. Tan, Mingxing and Quoc V Le. “Efficient Net: Rethinking Model Scaling for
Convolutional Neural Networks.” Int Conf Mach Learn 1 (2019): 11946.

8. Howard, Andrew, Ruoming Pang, Hartwig Adam and Quoc Le, et al. “Searching
for MobileNetV3.” IEEE Int Conf Comput Vis 1 (2019): 1314-1324.

9. Cai, Han, Ligeng Zhu and Song Han. “Proxyless NAS: Direct Neural Architecture
Search on Target Task and Hardware.” Mach Learn 1 (2018): 1-13.

10. Tan, Mingxing, Bo Chen, Ruoming Pang and Vijay Vasudevan, et al. “MnasNet:
Platform-Aware Neural Architecture Search for Mobile.” IEEE Conf Comput Vis
Pattern Recognit 1 (2019): 2815-2823.

11. Lane, D Nicholas, Petko Georgiev and Lorena Qendro. “Deepear: Robust
Smartphone Audio Sensing in Unconstrained Acoustic Environments Using
Deep Learning.” Proc ACM Int Joint Conf on Pervasive Ubiquitous Comput 1
(2015): 283-294.

12. Xu, Mengwei, Mengze Zhu, Yunxin Liu and Felix Xiaozhu Lin, et al. “Deep
Cache: Principled Cache for Mobile Deep Vision.” Proc Annu Int Conf Mobile
Comput Networking 1 (2018): 129-144.

MACs Acc. top-1 Latency (ms) CPU/GPU Device
MobileNet-V1 575M 70.6 - / - -
MobileNet-V2 300M 72 - / - -
MobileNet-V3 227M 75.2 - / - -
NAS-Net-A 564M 74 183 / NA Google Pixel 1
AmoebaNet-A 555M 74.5 190 / NA Google Pixel 1
MnasNet-A1 312M 75.2 78 / NA Google Pixel 1
ProxylessNas-R NA 74.6 78 / NA Google Pixel 1
NPAS (ours) 385M 78.2 11.8 / 6.7 Galaxy S10
NPAS (ours) 201M 75 9.8 / 5.9 Galaxy S10
NPAS (ours) 147M 70.9 6.9 / 3.9 Galaxy S10
NPAS (ours) 98M 68.3 5.6 / 3.3 Galaxy S10

Table 2. Comparison results of NPAS and representative lightweight networks: MobileNet-V1 [18], MobileNet-V2 [19], MobileNet-V3 [8], NAS-Net-A [20], AmoebaNet-A [21],
MnasNet-A1 [10], ProxylessNas-R [9].

Figure 4. Accuracy vs. latency comparison on mobile CPU.

J Sens Netw Data Commun, Volume 10: 8, 2021

Li Z

Page 5 of 5

13. Mobile Neural Network. Alibaba.

14. Deploy Machine Learning Models on Mobile And IoT Devices. TensorFlow.

15. Chen, Tianqi, Thierry Moreau, Ziheng Jiang and Lianmin Zheng, et al. “TVM: An
Automated End-To-End Optimizing Compiler for Deep Learning.” Proc USENIX
Conf Oper Sys Des Implement 1 (2018): 578-594.

16. Han, Song, Huizi Mao and William J. Dally. “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding.” Int Conf Learn Representations 1 (2016): 1-10.

17. Zhang, Tianyun, Shaokai Ye, Kaiqi Zhang and Yanzhi Wang, et al. “A Systematic
DNN Weight Pruning Framework using Alternating Direction Method of
Multipliers.” Eur Conf Comput Vis 11212 (2018): 191-207.

18. Howard, Andrew, Menglong Zhu, Bo Chen and Dmitry Kalenichenko, et
al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications.” Comput Vis Pattern Recognit 1 (2017): 1-12.

19. Real, Esteban, Alok Aggarwal, Yanping Huang, and Quoc V Le. “Regularized
Evolution for Image Classifier Architecture Search.” Proc AAAI Conf Artif Intell
33 (2019): 4780-4789.

20. Sandler, Mark, Andrew Howard, Menglong Zhu and Andrey Zhmoginov, et al.
“MobileNetV2: Inverted Residuals and Linear Bottlenecks.” Proc IEEE Conf
Comput Vis Pattern Recognit 1 (2018): 4510- 4520.

21. Zoph, Barret, Vijay Vasudevan, Jonathon Shlens and Quoc V Le. “Learning
Transferable Architectures for Scalable Image Recognition.” Proc IEEE Conf
Comput Vis Pattern Recognit 1 (2018): 8697-8710.

How to cite this article: Li, Zhengang.“A Compiler-Aware Framework of
Network Pruning and Architecture Search for Mobile Acceleration.” J Sens Netw
Data Commun 10 (2021): 138.

J Sens Netw Data Commun, Volume 10: 8, 2021

