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Abstract
With the increasing demand to efficiently deploy DNNs on mobile edge devices, it becomes much more important to reduce unnecessary computation and increase 
the execution speed. Prior methods towards this goal, including model compression and network architecture search (NAS), are largely performed independently 
and do not fully consider compiler-level optimization which is a must-do for mobile acceleration. In this work, we propose NPAS, a compiler-aware unified network 
pruning and architecture search and the corresponding comprehensive compiler optimizations supporting different DNNs and different pruning schemes, which 
bridge the gap of weight pruning and NAS. Our framework achieves 6.7 ms, 5.9 ms, and 3.9 ms ImageNet inference times with 78%, 75% (MobileNet-V3 level), 
and 71% (MobileNet-V2 level) Top-1 accuracy respectively on an off-the-shelf mobile phone, consistently outperforming prior work.
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Introduction

 The growing popularity of mobile AI applications and the demand 
for real-time Deep Neural Network (DNN) executions raise significant 
challenges for DNN accelerations. However, the ever-growing size of DNN 
models causes intensive computation and memory cost, which impedes the 
deployment on resource limited mobile devices. 

DNN weight pruning has been proved as an effective model compression 
technique that can remove redundant weights of the DNN models, thereby 
reducing storage and computation costs simultaneously [1,2]. Existing work 
mainly focus on unstructured pruning scheme where arbitrary weight can 
be removed as shown in and (coarse-grained) structured pruning scheme 
to eliminate whole filters/channels as shown in Figures 1a and 1b [1,3]. 
The former results in high accuracy but limited hardware parallelism (and 
acceleration), while the latter is the opposite. Recent work propose to prune 
the weights in a more fine-grained manner, which can be classified into 
block-based and pattern-based pruning as shown in Figures 1c and 1d 
[4,5]. This kind of semi-structured pruning preserves higher accuracy while 
also provides significant speedup with the assist of compiler-level code 
generation techniques.

Literature Review

Another active research area is the Neural Architecture Search (NAS), 
which designs more efficient DNN architectures using automatic searching 
algorithms [6]. Efficient Net and MobileNetV3 is representative lightweight 
net- works obtained by using NAS approaches [7,8]. Hardware aware 
NAS has also been investigated targeting acceleration on actual hardware 
platforms [9,10]. Recently, compiler-assisted DNN inference frame- works 
have drawn broad attention from both industry and academia [11,12]. 
TensorFlow- Lite (TFLite) (Ten), Alibaba Mobile Neural Network (MNN) (Ali), 
and TVM are representative state-of-the-art frameworks that support DNN 
inference on mobile devices [13-15]. Recent work Pat DNN employs a set 
of compiler-based optimizations to support specific pattern-based sparse 
DNN models to accelerate the end-to-end inference on mobile devices [5]. 
However, it still lacks the support for a layer-wise sparse model with various 
pruning schemes, which significantly limits the versatility of such framework.

Pruning a DNN model for real-time AI applications on mobile devices is 
a complex task because different types of layers may prefer different types 
of pruning schemes. At the same time, different layers may show different 

Figure 1.  Different weight pruning schemes for CONV and FC layers using 
4D tensor and 2D matrix representation. (a) Unstructured sparsity, (b) Structured 
sparsity (channel sparsity), (c) Fine-grained structured sparsity (block-based 
sparsity), (d) Fine-grained structured sparsity (pattern-based sparsity).
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sensitivities to the pruning ratio. Moreover, even under the similar pruning 
ratio, different pruning schemes also perform different acceleration rates 
due to computing parallelism. Thus, we bridge the weight pruning technique 
and NAS methods and propose a reinforcement learning (RL)-based 
network pruning and architecture search framework to automatically search 
the best-suited pruning configurations such as per- layer pruning scheme 
and pruning ratio. Moreover, we propose multiple compiler optimizations to 
enable fast code generation and support inference acceleration with per-
layer pruning schemes and ratios. We incorporate the compiler optimized 
model inference latency measured on the target mobile device as a reward 
in the searching process, making our framework compiler-aware. Our key 
contributions include:

• We bridge the gap between network pruning and NAS. We develop 
a compiler-aware framework of network pruning and architecture search, 
maximizing accuracy while satisfying inference latency constraint.

• We propose comprehensive compiler optimizations supporting 
different pruning schemes and sparse model inference with per-layer 
pruning schemes.

• We design a systematic search acceleration strategy, integrating pre-
trained starting points, fast accuracy and latency evaluations, and Bayesian 
optimization.

• Our NPAS framework achieves by far the best mobile acceleration: 
6.7ms, 5.9ms, and 3.9ms ImageNet inference times with 78%, 75%, and 
71% Top-1 accuracy, respectively, on an off-the-shelf mobile phone.

Proposed Unified Network Pruning and 
Architecture Search (NPAS) Framework

Overview of NPAS framework
It shows the proposed NPAS framework Figure 2. To take advantage of 

recent NAS results and accelerate the NPAS process, we start from a pre-
trained DNN model, and go through three phases as shown in the figure.

Phase 1 replacement of mobile-unfriendly operations: Certain 
operators are inefficient to execute on mobile devices (mobile CPU and 
GPU). For instance, certain activation functions, such as sigmoid, swish, 
require exponential computation, and can become latency bottleneck on 
mobile inference. These unfriendly operations will be replaced by mobile-
friendly alternatives such as hard-sigmoid and hard-swish, with negligible 
effect on accuracy.

Phase 2 NPAS scheme search: This phase uses a RL- based NAS 
method to generate and evaluates candidate NPAS schemes, and finally 
chooses the best-suited one. The search space includes per-layer filter 
type, per-layer prunning scheme and per-layer pruning rate. To accelerate 

such search, we present a meta-modelling procedure based on RL with 
Bayesian Optimization (BO). A fast evaluation methods are developed, 
tailored to NPAS framework. Moreover, we incorporate the overall DNN 
latency constraint effectively in the reward function of NPAS scheme search, 
ensuring that such constraint can be satisfied at the search outcome. The 
overall DNN latency is actually measured on the target mobile CPU/GPU 
based on the candidate NPAS scheme currently under evaluation. We rely 
on actual measurement instead of per-layer latency modelling as many 
prior NAS work. This is because our advanced compiler optimizations 
incorporate a strong layer fusion beyond prior compiler work, which is 
critical for efficient implementation of super-deep networks, and will make 
per-layer latency modelling less accurate.

Phase 3 Pruning algorithm search: We search the most desirable 
pruning algorithm to perform actual pruning and retrain the remaining 
weights. The candidate pruning algorithms include magnitude-based ones, 
ADMM-based algorithm etc [16,17].

Fast evaluation methods
We develop and adopt multiple tailored acceleration strategies to 

facilitate fast evaluation in NPAS scheme search. To evaluate each 
generated candidate scheme during search, we use the one-shot 
magnitude pruning instead of using complex pruning algorithms. And we 
adopt early stop- ping strategy, which only retraining pruned model for a 
few epochs. Because we can distinguish the performance of a candidate 
NPAS scheme by comparing the relative accuracy to other NPAS schemes. 
Moreover, we overlap the compiler optimization process with the accuracy 
evaluation process to further accelerate the overall evaluation process. We 
use compiler code generation and actual on-device latency measurement 
because of 

• Higher accuracy than per-layer latency modelling due to layer fusion 
mechanism, and 

• The fast auto-tuning capability of compiler to different mobile devices. 

Please note that the compiler code generation and latency measurement 
do not need the absolute weight values. Compiler code generation is much 
faster than DNN training (even a single epoch), and can be performed 
in parallel with accuracy evaluation (as accurate weight values are not 
needed). As a result, it will not incur extra time consumption to NPAS.

Discussion

Compiler design and optimizations
Another source of acceleration to achieve real-time inference on mobile 

devices is the compiler optimizations for generating efficient execution 
codes. We develop a comprehensive, compiler-based automatic code 
generation method with multiple optimizations.

Support for various pruning schemes: We design a domain 
specific language (DSL) to represent the DNN model, and a layer-wise 
representation (LR) is used to describe each DNN layer. This provide us 
the flexibility for supporting the layer-wise pruning scheme selection. We 
also design compact weight storage formats for different pruning schemes 
to improve the data locality.

Layer fusion mechanism: We incorporate a layer fusion technique 
to fuse the computation operators in computation graph and effectively 
reduce the inference latency. Our fusion based on two kinds of properties 
in the polynomial calculation: computation laws (i.e., associative property, 
commutative property, and distributive property) and data access patterns. 
As a result, we reduce not only the memory consumption of intermediate 
results, but also the number of operators.

Auto-tuning for different mobile CPU/GPU: To find the best-suited 
performance-critical tuning parameters, such as the data placement on 
GPU memory, matrix tiling sizes, loop unrolling factors, we use auto-

Figure 2. Overview of the proposed NPAS framework.
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tuning approaches as other DNN inference frameworks like TVM. And we 
incorporate Genetic Algorithm to explore the best configuration automatically 
and efficiently.

Compiler-aware latency: The latency of a given candidate model is 
hard to be accurately estimated based on a layer-wise latency model when 
compiler optimizations are incorporated, especially with layer fusion and 
auto-tuning. Thus, during the search process, we use real-world compiler 
optimized latency measured on the real device instead of building a layer-
wise latency model. Since the code generation time of our optimized 
compiler design is much shorter than the accuracy evaluation process, we 
overlap the code generation and latency measurement with the accuracy 
evaluation process; hence no extra time cost will be incurred.

Comparison with representative DNN inference acceleration 
frameworks on mobile device: To demonstrate the generality and the 
superiority of our compiler optimizations, we compared the inference 
latency of both dense model and sparse model with other representative 
DNN inference acceleration frameworks including TFLite, TVM, and MNN. 
And we show the results on widely used benchmark networks including 
VGG-16, ResNet-18 and MobileNet-V2. Tests are conducted on a Samsung 
Galaxy S10 smartphone with mobile CPU and mobile GPU respectively. As 
shown in, only based on our compiler optimization (without pruning), our 
results clearly outperforms the representative frameworks on both mobile 
CPU and mobile GPU (Table 1). By incorporating our network pruning 
(without causing accuracy loss), the inference latency is further reduced. 
The pruning rate for VGG-16, ResNet-18, and MobileNet-V2 is 8.2×, 5.3×, 
and 1.8×, respectively.

Results and evaluation
Experimental setup: We use the image classification task and ImageNet 

dataset to show the effectiveness of our framework, as in Figures 3 and 
4. We compare our accuracy and latency results with representative DNN 
inference acceleration frameworks including MNN, PyTorch Mobile, and 
TFLite. The results are tested on a Samsung Galaxy S10 smartphone using 
mobile CPU (Qualcomm Kryo 485) or mobile GPU (Qualcomm Adreno 640). 
For Phase 1, we conduct a fast fine-tuning with 5 training epochs after 
replacing the mobile-unfriendly operations (only once for the entire NPAS 
process). In Phase 2, 40 Nvidia Titan RTX GPUs are used to conduct the 
fast accuracy evaluation for candidate NPAS schemes concurrently.

Since we start from a well-trained model, we retrain 2 epochs for each 
candidate one-shot pruned model for fast evaluation. For each candidate 
model, we measure 100 runs of inference on target mobile devices and use 
the average value as end- to-end latency. Thanks to our fast evaluation and 
BO, using EfficientNet- B0 as starting point, the overall searching time is 
15 days, where Phase 1 only takes 5 epochs, and Phase 3 takes 1.5 days.

Evaluation results
First, our compiler optimizations can effectively speed up inference 

by up to 46% and 141% (on MobileNet-V3) without incorporating NPAS 
compared to the currently best frame- work MNN on mobile CPU and GPU, 
respectively. 

With the highest accuracy (78.2% Top-1), the end-to-end inference time 
of NPAS solution (385M MACs) is only 11.8ms and 6.7ms on mobile CPU 
and GPU, respectively. With MobileNet-V3 level accuracy (75% Top-1); our 
inference time (201M MACs) is 9.8ms and 5.9ms. With MobileNet-V2 level 
accuracy (71% Top-1); the inference time of NPAS solution (147M MACs) is 
6.9ms and 3.9ms. To the best of our knowledge, this is never accomplished 
by any existing NAS or weight pruning work. Detailed results can be found 
in Table 2 [18-21].

Framework VGG-16 ResNet-18 MobileNet-V2
TF lite 429 / 307 108 / 49.9 55.2 / 24.3
TVM 251 / 221 61.5 / 37.6 23.1 / 20.5
MNN 239 / 141 52.4 / 23.7 18.6 / 14.5
Ours (dense) 204 / 103 41.1 / 19.8 17.4 / 9.3
Ours (sparse) 37.3 / 18.1 20.6 / 9.7 9.2 / 4.3

Table 1. Mobile CPU/GPU Inference latency (ms) comparison with MNN, TVM, and TF Lite using dense (unpruned) models.

Figure 3. Accuracy vs. latency comparison on mobile GPU.
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Conclusion

In this work, we propose a fine-grained structured pruning applicable to 
various DNN layers, and a compiler automatic code generation framework 
supporting different DNNs and different pruning schemes, which bridge the 
gap of model compression and NAS. We further propose NPAS, a compiler-
aware unified network pruning and architecture search, and several 
techniques are used to accelerate the searching process.
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