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Introduction
When evaluating the effect of an exposure using observational 

data, adjustment for potential confounders is usually inevitable and 
is generally performed using statistical modeling. Risk adjustment 
models often include quantitative variables that may not have a 
linear relationship with the independent variable. As such, if they are 
modelled without transformation, the postulate of linearity, essential for 
parametric modeling strategies, is violated leading to bias and coverage 
problems [1]. If these variables are of primary interest, violating the 
postulate of linearity can lead to effect estimates that are too close to the 
null [2]. If these variables are used to control confounding, violation of 
the postulate of linearity can lead to residual confounding. Consequent 
influence on the measure of exposure effect is difficult to predict.

The literature abounds with advice on how to model quantitative 
covariates [3-6]. Some have suggested that dummy variables on a 
minimum of five categories are sufficient [7]. Others have suggested 
that parametric transformation with fractional polynomials (FP) [8] or 
non-parametric functions in Generalized Additive Models (GAM) [9] 
can improve control of confounding. Most studies that have evaluated 
the impact of modeling strategy on risk adjustment have been based on 
simulated data and limited to null associations between exposure and 
disease [6,10,11].  Therefore, while GAM theoretically offer the most 
flexible modeling strategy, [12] there is a lack of evidence based on real 
data that they lead to better control of confounding. 

The objective of this study was to evaluate the impact of using 
GAM over other commonly used covariate modeling strategies on risk 
adjustment.

Methods
Study setting

The study was based on the comparison of adjusted hospital 

mortality estimates across trauma centers in the province of Quebec, 
Canada. The context of trauma provides a good test bed for the 
evaluation of risk adjustment as there is great heterogeneity in the 
baseline risk of injured patients across centers, most of the indicators 
used to describe baseline risk are quantitative in nature, and the 
relationship between many risk factor indicators and mortality is 
non-linear. We were primarily interested in how parameter estimates 
describing the log odds of mortality in one trauma center compared to 
another trauma center, adjusted for quantitative risk factors, would vary 
according to the modeling strategy applied to risk factors. Of secondary 
interest was the effect of modeling strategy on statistical significance.

Study data
The study sample was drawn from the Quebec Trauma Registry, 

which contains information on all trauma patients admitted to any of 
the 59 trauma centres in the province of Quebec, Canada according 
to the following uniform inclusion criteria: death, intensive care unit 
admission, hospital length of stay of more than two days, or transfer 
from another hospital. Data is extracted from patient files in each 
trauma center, according to standardized coding protocols, and then 
centralized at the Quebec Ministry of Health where it is screened and 
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2, 3, 4, 5 categories, 3) FP, and 4) GAM. The parameter estimates generated by the first three modeling strategies were 
compared to that generated by the GAM using mean standardized difference. Mean standardized difference (95% CI) 
was 71.69 (51.7-91.7) for single linear terms, 21.1 (14.3-28.9); 23.4 (15.6-31.2); 49.6 (28.1-71.1); and 48.5 (28.8-68.2) 
for dummy variables on 2, 3, 4, and 5 categories, respectively and 12.7 (10.0-15.4) for FP. Results suggest that GAM, 
FP and at least 4 risk-homogeneous categories provide equivalent risk adjustment to smoothing splines in GAM while 
single linear terms and less than 4 categories may induce residual confounding. 
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added to the Quebec Trauma registry. Periodic validation, supervision 
by a data coordinator, yearly on-going training for data coders, an 
electronic forum of coding queries, and thrice-yearly meetings with 
key stakeholders (e.g. trauma physicians, researchers, administrators), 
all help improve data quality. Trauma centers with less than 100 patients 
(n=7) were excluded from analyses. 

Statistical analysis
The outcome variable of interest was hospital mortality. Risk 

adjustment was based on five variables commonly used for case-mix 
control in trauma research: 1) age; 2) the Injury Severity Score, an 
ordinal variable varying between 1 and 75 that measures increasing 
anatomical injury severity [13]; 3) the Glasgow Coma Score, an ordinal 
variable varying between 3 and 15 that measures increasing level of 
consciousness  [14]; 4) respiratory rate, an interval-scale variable varying 
from 0 to around 100; and 5) systolic blood pressure, an interval-scale 
variable varying from 0 to around 300. The Injury Severity Score is 
based on clinical evaluations performed throughout the hospital stay 
whereas the Glasgow Coma Score, respiratory rate, and systolic blood 
pressure are measured on arrival at the emergency department of the 
trauma center. 

Risk adjustment variables were entered in a logistic regression 
model using each of the four modeling strategies: 1) a single linear 
term, 2) dummy variables on either 5, 4, 3, or 2 categories, 3) FP, and 
4) GAM. Categories were based on clinically plausible cut-points that 
are widely used in the literature. However, alternative cut-points were 
evaluated in sensitivity analyses.

Fractional polynomials
Introduced by Royston and Altman in 1994 [14], fractional 

polynomials (FP) are an extension of traditional quadratic and cubic 
polynomials whereby a wider range of powers is used. Royston suggests 
that the following group of powers gives all the flexibility needed: -2, 
-1, -0.5, 0, 0.5, 1, 2, and 3, where 0 represents the logarithm. Models 
can be first degree (with only one polynomial term) or can include 
more terms. According to Royston, two terms (second degree model) 
offer sufficient flexibility in most situations. Optimal FP were based on 
minimizing model deviance using STATA software (Stata Corporation, 
College Station, TX, Version 7.0). Clinical plausibility was verified by 
inspecting curves of the functional relationship between risk factors 
and the risk of mortality. 

Generalized additive models

Generalized Additive Models are an extension of Generalized 

Linear Models that are based on the specification of a parametric link 
function (the logit is used for logistic regression) and allow independent 
variables to be modeled with parametric or non parametric functions. 
Non-parametric functions (cubic splines are used in this study) allow 
the expression of relations to mortality that are non-linear. While the 
location of knots in a cubic smoothing spline has little influence on 
results, the number of knots (equivalent to the smoothing parameter 
usually expressed as the number of degrees of freedom) is important. 
Too many degrees of freedom can lead to overfitting (describing random 
error rather than a true underlying relationship) whereas choosing too 
few can lead the analyst to miss important trends (the linear model is 
an extreme example of this with a smoothing parameter equivalent to 1 
degree of freedom). Unfortunately, the algorithms available for choosing 
the optimal smoothing parameter (e.g. maximum of the generalized-
cross validation function) are not yet well developed and can generate 
misleading results. For this reason, a fixed smoothing parameter 
equivalent to four degrees of freedom was used for each variable. Data 
simulations performed by Hastie and Tibshirani have demonstrated 
that four degrees of freedom is suitable in most circumstances [12]. 
However, other smoothing parameters were evaluated in sensitivity 
analyses. Again, clinical plausibility of functional relationships was 
verified graphically. GAM were fit using the PROC GAM procedure in 
the Statistical Analysis System (SAS Institute, Cary, NC, version 9.2).

Model fit
The model fit offered by each of the four modeling strategies was 

evaluated by fitting the logistic models described in Table 1. 

The fit of each model was described using Akaike’s Information 
Criteria (AIC). The AIC measures goodness of fit and is calculated as a 
function of the maximum of the likelihood function and a correction 
for the number of parameters in the model. The discrimination of each 
model was also evaluated described by the Area Under the receiver 
Operating Characteristic curve (AUC). The AUC varies between 0 and 
1 where a model with an AUC=1 discriminates deaths from survivors 
perfectly and a model with an AUC=0.5 discriminates no better than 
chance alone. AUC were compared using the non-parametric method 
for dependant samples described by Delong et al. [15]. Finally, curves of 
observed and predicted mortality were compared for univariate models. 
Observed mortality proportions were calculated for as many small 
intervals of quantitative variables as possible based on the constraint of 
at least 10 events per interval.

Risk adjustment

The influence of modeling strategy on risk adjustment was assessed 

Model Description Specification

I Single linear term Logit(P)= α + β1AGE + β2ISS + β3GCS + β4RR + β5SBP

IIa Dummy variables on 5 categories
Logit(P)= α + β1AGE55-64 + β2AGE65-74 + β3AGE75-84 + β4AGE>84 + β5ISS9-15 + β6ISS16-24 + β7ISS25-40 + β8ISS>40 + 
β9GCS9-12 + β10GCS6-8 + β11GCS4-5 + β12GCS3 + β13RR0+ β14RR1-5 + β15RR6-9 + β16RR>29 + β17SBP0+ β18SBP 1-49 + 
β19SBP 50-75 + β20SBP 76-89

IIb Dummy variables on 4 categories Logit(P)= α + β1AGE65-74 + β3AGE75-84 + β4AGE>84  + β5ISS9-15 + β6ISS16-24 + β8ISS>24 + β9GCS9-12 + β10GCS6-8 + 
β11GCS3-5 + β13RR0-5+ β15RR6-9 + β16RR>29 + β17SBP0-49+ β19SBP 50-75 + β20SBP 76-89

IIc Dummy variables on 3 categories Logit(P)= α + β2AGE65-74 + β4AGE>74 + β5ISS9-15 + β8ISS>15 + β9GCS9-12 + β12GCS3-8 + β13RR0-9+ β16RR>29 + β17SBP0-75+ 
β20SBP 76-89

IId Dummy variable on 2 categories Logit(P)= α + β4AGE>65 + β5ISS>15 + β9GCS>8 + β13RR0-9/>29+ β17SBP0-89 

III FP Logit(P)= α + β1AGE3+ β2(AGE3 X log(AGE))I + β3ISS-1+ β4log(ISS)I + β5log(GCS) + β6GCS3
 + β7log(RR)+ β8(log(RR) 

X log(RR))I + β9SBP+ β10log(SBP)I

IV GAM Logit(P)= α + s(AGE)+ s(ISS)+ s(GCS)+ s(RR)+ s(SBP)

Logit(P) is the log odds of the probability of hospital mortality, ISS: Injury Severity Score; GCS: Glasgow Coma Score; RR: Respiratory Rate; SBP: Systolic Blood Pressure, 
FP: Fractional Polynomials, GAM: Generalized Additive Model, S: cubic smoothing spline

Table 1: Models used for analyses.
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by entering a series of dummy variables representing each center 
compared to a reference (the largest center) into models I to IV. Trauma 
center effect estimates generated by models I to III were compared to 
those generated by the GAM (model IV) by calculating standardized 
difference in parameter estimates, i.e. (βjGAM - βjMODEL)/SE(βjGAM) and 
the proportion of estimates that changed statistical significance. 
Standardized differences of over 40% were considered important as 
they are considered to have adverse effects on bias and coverage [16].

Statistical analyses were performed using the Statistical Analysis 
System (SAS Institute, Cary, NC, version 9.2). The study was approved 
by the Research Ethics Committee of the ‘Centre Hospitalier Affilié 
Universitaire de Québec’ and the ‘Commission d’Accès à l’Information 
du Québec’.

Results
The study population comprised 123,027 patients of whom 7600 

(6.2%) died in hospital. SBP had a Gaussian distribution but all other 
quantitative variables had asymmetric distributions. There was an 
important variation in the distribution of risk factors across trauma 
centers, illustrating the need to adjust for baseline risk in hospital 
comparisons: Mean age varied between 8.0 (95% CI: 7.9-8.2; paediatric 
center) and 71.2 (70.5-71.8) years; mean ISS between 5.2 (4.5-5.9) and 
14.1 (138-14.4); mean GCS between 12.4 (11.7-13.0) and 14.8 (14.7-
14.8); mean RR between 18.0 (17.9-18.1) and 23.1 (22.8-23.3); and 
mean SBP between 116.3 (115.8-116.9) and 149.8 (148.5-151.1). 

All non-linear terms for GAM had p-values <0.001, demonstrating 
that the association between each quantitative variable and hospital 
mortality had a significant non-linear component. When compared 
to the observed risk of mortality, single linear terms led to an 
underestimation of risk for patients aged over 80 years (Figure 1a), an 
overestimation of risk for ISS>40 (Figure 1b), an underestimation of 
risk for GCS=3, and an overestimation of risk for GCS=4 to 10 (Figure 
1c). In addition, single linear terms led to an overestimation of risk 
for RR>20 (Figure 1d) and an underestimation of risk for SBP<50 
and SBP>150 (Figure 1e). Dummy variables on categories led to an 
underestimation of risk for patients >85 years of age (Figure 1a), an 
underestimation for ISS>50 (Figure 1b), and they did not pick up the 
increase in risk for SBP>150 (Figure 1e). The functional relationships 
between all risk factors and mortality risk described by GAM and FP 
were very close to observed values. However, for the ISS, RR, and SBP, GAM and FP functions diverged for extreme values where data was 

sparse (Figure 1b, 1d, and 1e). 

The discrimination and fit of models with a single linear term were 
inferior to that of the GAM (Table 2). The discrimination and model fit 
of models based on categories decreased with the number of categories 
used. Dummy variables on less than 4 categories were not only inferior 
to the GAM but were also inferior to single linear terms. Discrimination 
and model fit using FP were equivalent to that of the GAM. 

Mean standardized difference in parameter estimates from the GAM 
model were over 40% when single linear terms or dummy variables on 
2 or 3 categories were used but under 40% for FP and dummy variables 
on 4 or 5 categories (Table 3). Similarly, single linear terms or dummy 
variables on 2, 3, or 4 categories led to a change in statistical significance 
over GAM in more than 10% of estimates.

Sensitivity analyses

Generalized cross validation of deviance functions could not 
identify ‘optimal’ smoothing parameters for the GAM model. We 
therefore increased df by two to a maximum of 20 (or not greater than 
the number of levels /2) for each variable. Model fit and discrimination 

Figure 1a: Observed and predicted mortality risk according to age. Predicted 
mortality risk was generated using a univariate logistic model of hospital 
mortality as a function of age.

Figure 1b: Observed and predicted mortality risk according to the Injury 
Severity Score Predicted mortality risk was generated using a univariate logistic 
model of hospital mortality as a function of the Injury Severity Score.

Figure 1c: Observed and predicted mortality risk according to the Glasgow 
Coma Score Predicted mortality risk was generated using a univariate logistic 
model of hospital as a function of the Glasgow Coma Score.
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for the model with maximum df for each variable was similar to that 
obtained with a fixed smoothing parameter equivalent to 4 degrees of 
freedom (AIC=34,600; AUC=0.901). When cut-points were changed to 
reflect alternative clinically plausible categories (ex. GCS<13; ISS>12; 
age>70), results for models for dummy variables were similar.

Discussions
The results of this study suggest that the method used for modelling 

quantitative covariates in a logistic regression model does have an 
influence on risk adjustment. Of the four modelling strategies used, 
FP and GAM led to significantly better model fit and discrimination 
than single linear terms or categories. However, FP, GAM, and dummy 
variables on at least four categories led to similar parameter estimates. 
Conversely, single linear terms and less than four categories led to 
poorer model fit, significantly worse discrimination than GAM, and 
parameter estimates with a mean standardized difference of more than 
40%. If we assume that among the modeling strategies tested, GAM 
predict outcome most accurately, an assumption supported by the 
better fit of the GAM model to observed data, results suggest that FP, 
GAM, or dummy variables on at least 4 categories may offer superior 
risk adjustment to the other modelling strategies tested.

The potential for residual confounding when quantitative covariates 
are modeled with single linear terms in spite of non-linear relations to 
response has been widely documented [6,7,17]. In addition, several 
studies have shown evidence that using dummy variables on categories 
for risk adjustment can lead to residual confounding [10,18]. In the 
1960s, Cochrane studied the effect of crude versus fine categorization 
of confounding variables on exposure effect estimates and found that 
bias decreased as the number of categories used increased [18]. Royston 
showed that FP fit data better than single linear terms and dummy 
variables on categories [8]. More recent literature has suggested that 
GAM can improve risk adjustment compared to single linear terms or 
parametric transformations of linear terms [9]. In a study comparing 
spline regression to dummy variables on five categories, little difference 
in exposure OR effect estimates was observed [17].  The results of this 
study therefore confirm previous work and go further by suggesting 
that a) FP and GAM provide similar model fit and risk adjustment and 
b) although categories do not fit data as well, using at least four may 
provide equivalent risk adjustment to FP and GAM.

While dummy variables on categories, FP, and GAM are useful 
strategies for modelling non-linear associations to outcome, each 
method has its disadvantages. As shown in our data, dummy variables 
on categories are sensitive to the number of categories used. In 
addition, the choice of cut-points is crucial; multiple risk-homogeneous 
categories are ideal but may lead to categories with low sample sizes 
resulting in unstable regression coefficients. Furthermore, dummy 
variables lead to step functions that are clinically implausible and do 
not use all the information in the quantitative variable, which can lead 
to loss of statistical power [5]. 

FP and GAM allow for smooth non-linear relations to the 
dependant variable and model quantitative variables over the whole 
range of values. However, they are mathematically complex and both 
require careful implementation. In the case of FP, the correct choice of 
powers is critical and relying solely on empirical model fit (deviance 
statistics are used in STATA) may lead to clinically implausible 
associations. In the case of cubic spline functions used in GAM, the 

Figure 1d: Observed and predicted mortality risk according to respiratory rate. 
Predicted mortality risk was generated using a univariate logistic model of 
hospital mortality as a function of respiratory rate.

Figure 1e: Observed and predicted mortality risk according to systolic blood 
pressure Predicted mortality risk was generated using a univariate logistic 
model of hospital mortality as a function of the systolic blood pressure.

Model AUC AIC
I) Single linear term 0.886 (0.882-0.889)* 37 944
IIa) Dummy variables on 5 categories 0.894 (0.891-0.897)* 35 364
IIb) Dummy variables on 4 categories 0.887(0.884-0.890)* 35 799
IIc) Dummy variables on 3 categories 0.876 (0.872-0.880)* 37 729
IId) Binary variables 0.854 (0.850-0.858)* 39 594
III) FP 0.901 (0.898-0.904) 35 054
IV) GAM 0.901 (0.898-0.905) 34 948

FP: Fractional Polynomials, GAM: smoothing splines in a Generalized Additive 
Model
*p<0.0001 when compared to the generalized additive model

Table 2: Discrimination and model fit.

Model Mean standardized 
difference (95% CI)

% changed statistical 
significance (95% CI)

No adjustment 172.3 (138-207) 51.9 (0.38-0.66)
I) Single linear term 71.69 (51.7-91.7) 15.4 (6.9-28.1)
II) Categories (5) 21.1 (14.3-28.9) 5.8 (1.2-12.1)
IIb) Categories (4) 23.4 (15.6-31.2) 11.5 (4.4-23.4)
IIc) Categories (3) 49.6 (28.1-71.1) 15.4 (6.9-28.1)
IId) Binary variables 48.5 (28.8-68.2) 13.5 (5.6-25.8)
FP 12.7 (10.0-15.4) 3.9 (0.5-13.2)
GAM 0 0

FP: Fractional Polynomials, GAM: smoothing splines in a Generalized Additive 
Model

Table 3: Mean standardized difference in parameter estimates, and percent 
change in statistical significance (p<0.05) compared to the GAM model.
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number of knots (equivalent to the smoothing parameter usually 
expressed as the number of degrees of freedom) is important. Too 
many degrees of freedom can lead to over fitting whereas important 
trends can be missed if too few are used. Unfortunately, the algorithms 
available for choosing the optimal smoothing parameter, such as 
generalized cross validation of deviance functions, are not yet well 
developed and can generate misleading results [12]. Identification of 
the minimum of such functions is not simple as they may have no or 
multiple minima. Furthermore, use of such criteria can often lead to 
over-fitting and clinical implausible associations. The choice of power 
functions for FP and the choice of smoothing parameters for smoothing 
splines in GAM should therefore always be accompanied by a graphical 
verification of functional associations with outcome to verify clinical 
plausibility. Splines can also have unpredictable behaviour at extremes 
of variable ranges where data is sparse. This will have little influence on 
confounding control as estimates are very imprecise in these areas but 
can be disarming when presenting functional relationships graphically. 
Accompanying fitted functions with confidence bounds will convey 
information on precision. Like a single linear term, FPs and smoothing 
splines are sensitive to extreme observations. Therefore, performing 
influence analysis and checking residuals is important when using these 
methods. Finally, due to the inherent complexity of non-parametric 
functions, GAM with smoothing splines cannot be written explicitly 
and are therefore difficult to reproduce. Models based on FP may 
therefore represent the most advantageous modeling strategy as they 
are comparatively intuitive and can be fully expressed in written form.

Strengths and limitations

To date, studies that have compared the impact of different modeling 
strategies on model fit or confounding control been based on single 
group comparisons [17] or on simulated data that are likely to convey 
‘unrealistic situations’ [5,6,19] and are often limited to quantitative 
variables with standard normal distributions and null associations 
between exposure and outcome [6,10,11]. The current study was based 
four widely-used modeling strategies, on real data, on several covariates 
with differing probability distributions from normal to extremely 
skewed, on exposure with varying associations to outcome, and on 
multiple comparisons of exposure groups.

Certain limitations should be considered however, when 
interpreting the results. First, the study was based on data collected 
in one clinical context and only evaluated a dichotomous outcome 
modelled on a logit scale (logistic model). Results may therefore not 
generalize to other clinical situations or other model types. However, 
we believe the use of several risk factors with differing probability 
distributions, and multiple exposure comparisons add to the external 
validity of our findings. 

Second, other modeling strategies for quantitative independent 
variables could have been evaluated. For example, higher powers for 
FPs, different smoothing parameters for GAM, or alternative cut-points 
for dummy variables could have been used. In addition, nonlinear 
transformations of quantitative variables could have been evaluated 
including cusums [20] or negative exponential functions [3]. However, 
considering the large number of possible combinations, we restricted 
comparisons to commonly used modeling strategies and cut-points 
that are widely used in clinical research.

Conclusions
Results of this study indicate that when quantitative confounders 

have a non-linear association with outcome, cubic smoothing splines in 
GAM, FP, or dummy variables on at least 4 categories may offer better 
control for confounding than single linear terms or dummy variables 
on less than 4 categories, providing they are implemented with care.
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