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Abstract
In the present paper, an investigation was carried out to evaluate the micro scale elastic behaviour of composites. 

The novelty of this work is to compare three different simulation methods for the composite Carbon/PPS by suggesting 
a 2D programing simulation approach that would reduce the calculation time of the elastic behaviour of the yarn of 
woven composite material. To conduct the work an experimental analysis was planned to identify the micro geometric 
parameters of the composite and to collect all needed dimensions for building the numerical models.

The simulation procedures are carried out through three different micro-scale methods and by applying two 
different finite element approaches: 3D periodic approach, 3D random approach and 2D random approach, the results 
show that the Young modulus presents a differentiation reach 12% and the Shear Modules G13 and G12 is roughly 
11% and 29.39% for G23. The micro mechanical results are discussed according to the recent literature investigations. 
The numerical results from the proposed approaches are discussed, which show good agreement with reality of the 
material when using the random 3D approach and very good gain of time of simulation when using the 2D programing 
simulation approach. This approach reduces the calculation time about 50% compared with other methods.
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Introduction
The numerical optimization, numerical methods and analytic 

investigation are aim parts in the recent research investigations. 
Several works investigated the thermal and flow analysis [1-4], others 
investigated nanofluid simulation and heat transfer parameters 
[5]. Others analyse the effects of the nanoparticles volume fraction, 
nanoparticle type and size [6]. In the present work we investigated in the 
multi-scale modeling of composites (Figure 1), this numerical method 
is one of the most used methods in computational mechanics and it 
was adapted by several researchers. Such as the study of Costanzo et al., 
[7] when they have implanted a survey on periodicity and boundary
conditions; and Boisse et al., [8] when they raised the constructive 
equations of the mechanical behavior of the woven composites during 
the forming. Also Hivet et al., [9] they elaborated a mathematical 
approach to identify the trajectory and the different sections of the 
yarn in texture, the profiles of the contacts’ curves and the contact’s 
sections according to the conic equations. The study of Orgéas et al., 
[10] focuses in meso-scale, the permeability of the reinforcements
woven of stratified composites by surveying the velocity in such
composites. Wang et al., [11] has studied the predictive mechanical
behavior modeling in woven composite structure, by analyzing 3D
finites elements. Badel et al., and Boisse et al., [12,13] both of them had 
determined the fibers orientations, in reinforcements woven during
and after composites forming process.

Then according to the previous works, to develop a reliable model 
describes accurately the behaviour of woven composite material, it is 
recommended to use the appropriate micro-scale modeling approach. In 
this investigation, we started by using an experimental characterization 
of the texture to prepare a numerical geometrical description of fibers 
diameters and distributions in the polyphenylene sulfide (PPS) matrix. 
Then, we identified two types of RVE (periodic and random one). Then, 
basing on the homogenization method and by applying the boundary 
conditions to the RVE, we extracted the coefficients of the rigidity 

matrix and the parameters of the yarn composites. Comparison of the 
simulated microstructure, by developing a 2D finite element approach 
in Matlab. Finely, we have identified the able RVE to characterize 
accurately the yarn of our woven fabric composite.  

Carbon-Fiber Reinforced Thermoplastic Materials
The composite texture consists of a carbon fibers and a PPS matrix 
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Figure 1: Multi-scale modeling techniques in woven fabric composites. 



Citation: Gherissi A, Abbassia F, Zghal A. (2016) A Comparative Study of Three Different Microscale Approaches for Modeling Woven Composite 
Material. J Material Sci Eng 6: 307. doi: 10.4172/2169-0022.1000307

Page 2 of 7

Volume 6 • Issue 1 • 1000307J Material Sci Eng, an open access journal
ISSN: 2169-0022 

and the volumetric fraction of the fibers in the composites is Vf =0.5.The 
characteristics of the materials forming the composite are summarized 
in the following (Table 1).

The characterization of the texture of the composite has been carried 
out throw two main steps. In the first one, we determine the texture’s 
character, the trajectory, and the sections of the yarns (Texture of the 
composite: satin 5 × 1 in three layers). Then, in a second step, we find 
out the micrographic arrangement of the fibers in a yarn (Figure 2). 

The yarn is composed by thousands of small fibers whose diameter in 
the order of 6.24 µms (Figure 2). This value is established by calculating 
the average of 150 fibers’ diameter. The disorganized arrangement of 
the fibers in the yarn presented in Figure 3 will produce a variation 
in the local properties influenced by the distance between these fibers. 
Then it is necessary to start by characterizing the fibers’ arrangement 
in order to determine the minimal size of the representative volume 
elementary (RVE) of the yarn. To do so, we can characterize the 
distribution of the fibers by analyzing the yarn’s picture and using the 
covariance concept adapted already by [14]:

( ) { }, ,+ = ∈ + ∈C x x h P x d  x h d 		                  (1)

The covariance is defined as the probability of adherence of two 
points “x” and “x+h” in the same phase d, and it can be valued by 
carrying out the Fourier’s transformation of Figure 2. And according 
to the works of Badel [13] the periodicity of the microstructure is 
presented by the periodicity of the covariance.

The 3D Micro Scale Modeling
The geometric model of RVE

The choice of the RVE, which is a cubic shape, was based on several 
studies [15-19]. This RVE should have the smallest size which makes 

it representative of the yarn material. We opted for this step of the 
simulation for two cubic cells shapes and we considered the fiber has 
a cylindrical form. The first cell (Figure 3a) is periodic and the second 
is random (Figure 3b). The volumetric fraction of the reinforcement is 
calculated by the report between the volume of the fibers and the total 
volume of the basic cell: 

2

24
= =Fibers

f
Total

V ðdV n
V a 				                    (2)

Where: d is the diameter of the fiber, a is the side of the basis cell, 
and n: is the number of fibers by cell. Choosing the size of representative 
volume elementary must satisfy the following criteria:

•	 It must be small enough to take into account the microscopic 
structure of material, and sufficiently large to describe the 
overall behavior of material.

•	 The properties must be independent of the location of the 
material where it was taken. 

We have chosen to make statistical case to identify the yarn random 
representative volume elementary. One varies the window size. We 
identify in each window, the minimum and maximum fibers volume 
fraction by scanning the window in the photograph of the structure 
(see Figures 4 and 5). Two types of representative volume elementary 
(RVE): periodic and random distribution of micro-fibers in the yarn 
has identifying (Figure 3).

The elastic constructive equations of the yarn’s homogenesa-
tion

The elastic properties, are calculated by a periodic homogenization 
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Figure 3: The periodic representative elementary volume of the yarn, number 
of fiber N = 2 fibers (a) and vf = 0.505. The random representative elementary 
volume of the yarn, number of fiber N= 14 fibers and vf = 0.475 (b).
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Figure 2: Micrographic of three ply fabric specimens (meso-scale) and size 
and arrangement of the micro fibers in the yarn.

The Young Modules (MPa) Poisson Coefficients Shear Modules (MPa)
E1=197500 ν13=0.4185  G13=G12=  4313.7 

E2=E3=14198 ν12=0.4188   G23=14356 
  ν23= 0.9154  

Table 1: The industrial characteristic of the materials forming the composite. 

 
 

 

 

Figure 4: Evolution of bound7s for local volume fraction with window size.
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via a finite element method developed using ABAQUS software. It will 
give us the opportunity to study the elastic behavior of the yarn and to 
calculate the elastic coefficients of the composite material. For 3D RVE 
(cubic shape), submitted to a volumetric load, its elastic behavior can 
be presented as follow:

=å Öó 				                                      (3)

 Where: ε is the strain tensor, σ is the stress tensor, and Φ: the 
suppleness Matrix. Then, the stress distribution in the elementary 
volume can be written as follow: 

=ó Cå 					                      (4)

Where Φ= C -1

The mechanical behavior of the yarn is equivalent and it depends on 
the mechanical and geometric properties of the different constituent: 
the fiber geometry, behavior, and distribution in the matrix, the matrix 
behavior and the characteristic of the fiber-matrix interface. The process 
of homogenization consists in assimilating a material characterized by 
an important heterogeneity by a homogeneous one. This process was 
applied to the RVE. The main step of the homogenization consists in 
the determination of the stress and displacement fields within the RVE.  

The average of the microscopic stress of this RVE can be expressed 
as follow:

.1
= =∑∫ó ódv

V
Ω

					                   (5)

In the same way, the average of the microscopic strain is given by:

 
.1

= =∫å ådv E
V
Ω

           				                    (6)

Where E is the macroscopic strain and ∑ is the macroscopic stress. 
The Hooke criteria can write as follow:

: : : E〈 〉 = 〈 〉 〈 〉 =∑ó å ó å                			                   (7)

The macroscopic stress ( )= 〈σ〉∑ is a linear function of the 
macroscopic strain (E )= 〈∑〉

=∑ homC E 	               		               	                                             (8)   

Where Chom represents the macroscopic tensor obtained by the 
homogenization method. The calculation of the hom

 ijklC  coefficients takes 
place while calculating the stress field that corresponds to an imposed 
macroscopic displacement. Supposing that the yarn represents a 

composite with orthotropic characteristic, the macroscopic elasticity 
relation is expressed as follow:
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For i =j=k=l  ; i, j, k, l Є{1,2,3}, the hom
 ijklC  coefficients, have been 

determined by imposing a shear loading whose main directions 
correspond with the symmetry’s axes of the cell; that’s means:

11 1 1 22 2 2 33 3 3= ⊗ + ⊗ + ⊗        E E e e E e e E e e                                                                                                   (10)
For i=k and j = l i, k Є {1,2} and j, l Є {2,3}, the  coefficients hom

 ijklC
, have been determined by imposing to the basic cell a macroscopic 
displacement of type "simple shear" which can be expressed as follow:

( )/ 2= ⊗ + ⊗ij i j j i E E  e e e e                                                                                                                       (11)

In the order to have a periodic applied displacement’s filed, it is 
necessary that every cell satisfies the following conditions [10]:      

1. 	 The continuity of the vector σ.n

2. 	 The compatibility of the strain fields ε; therefore the neighboring 
should not be separated or superposed. 

The periodicity of the passage from a cell to its neighbor is 
equivalent to pass a face from one face of the cell the cell to the opposite 
face. The condition (1) becomes: σ.n must be on the first opposite to 
that in the other face. The stress field σ is called periodic on the cell 
while the field σ.n is anti-periodic on its contour. 

Homogenization of the yarn based on micro scale finite ele-
ment model

The micro scale constructive finite elements models: The adapted 
method consists in applying three simple traction loads following the 
three main axes (1, 2 and 3) and three simple shear loads in the directions 
2-3, 1-2 and 2-3 (Figure 6). In order to apply this method, we should 
impose a displacement loading and put a specific boundary conditions 
for each load, this method has been adopted by several authors [10,14]. 
The calculation of ∑ij is approximated by the summation of all the 
volumetric elements of structure already calculated by elementariness 
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Figure 5: Variations in local volume fraction of fibres.
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integrations throw every finite element. Then we have the following 
equation:

	                                                                     (12)

Where: Vk is the volume of the kth element and σij is the composing 
ij of the microscopic constraint of the kth element. The simulation is 
done on the Abaqus standard software. The tie boundary conditions 
it is imposed between the fibers and the matrix. The REV mesh form 
is tetrahedral for the matrix and hexahedral for the fibers. We have 
generated 2556 hexahedral mesh elements for the fibers and 14060 
tetrahedral elements for the matrix.

Periodic approach’s results: During the simulation, it is necessary 
to apply the loads as imposed displacements and to impose boundary 
conditions to the limits for every load. At first, we have supposed that 
the material is orthotropic. Then, the numeric simulation and the 
calculations by periodic homogenization gave the rigidity matrix of the 
yarn:  

281263.651 100034.036 100031.667 0 0 0
100034.0364 123174.25 115761.44 0 0 0
100031.676 115761.445 123174.25 0 0 0

C
0 0 0 14355.588 0 0
0 0 0 0 4313.672 0
0 0 0 0 0 4324.424

 
 
 
 

= 
 
 
  
 

       13)

The calculation of the inverse rigidity matrix, will give the values of 
the suppleness matrix Φ, so we can determine the material parameters. 
These parameters are summarized, in the following Table 2.

The yarn’s material is unidirectional and the results of the 
simulation of the periodic RVE using Von Mises constraint are 
provided in Figure 7.

The Von Mises constraint in the RVE structure is

                                                                                               (14)

Random approach’s results: By one applying the same boundary 
conditions and the same loads on the random cell, we can determine 
the constants of the rigidity matrix C of the yarn and the suppleness 
matrix Φ, and consequently we can determinate the material random 
parameters which are shown in the following Table 3. The results of 
the simulation of the random RVE using Von Mises constraint are 
provided in Figure 8.

The 2D programing simulation approach: The main idea of the 
2D simulation approach is to simulate 2D numerized photograph rep-
resentative of the composite structure obtained from optical micro-
scope. We used for this step, all of the micro scale micrograph. At first, 
we binarized the structure of the composite yarn and we developed the 
finite element modeling approach as follow in Figure 9.

Hooke’s law and FE method: The domain Ω belonging represented 
in a direct orthonormal basis 1 3(0, ),



 e   e  :

We work within the framework of small deformations, and in the 
general case the equilibrium equations are written as Figure 10:

1 3(0, ),


 e   e        		                                                                                                                      (15)

Where

 f :  


The volumes’ strength; σ: Stress tensor; ρ: The density; and 
The acceleration

•	 We work in static conditions: γ=0 

		                                                                                        (16)

The Green formulation, for Ω of class C1, U* et σ ∈ C1(Ω), we can 
write:

* * *: ( . ).gradU U div n Uσ σ σ
Ω Ω ∂Ω

= − +∫ ∫ ∫                                                                                            (17)

Where: *U is the impose displacement and n the normal exterior 
vector of Ω domain

* *: ( . ). 0gradU n Uσ σ
Ω ∂Ω

− + =∫ ∫ 	                                                                                                                    (18)

ln * 0 ( .n). * 0
=

∂Ω

∂Ω = → σ =∫U U 	                                                                                                     (19) 
* : 0gradU σ

Ω

=∫ 		                    	                                       (20)

* : 0ε σ
Ω

=∫                                                                                                                                                 (21)

Where: ε* is the impose deformation 

The HOOKE’s low:

.Cσ ε=                                                                                                                 (22)
* : : 0Cε ε

Ω

=∫                                                                                                                             (23)

For 2D numerized cases, Hooke’s law can be generally written, in 
a matrix form, as

                                                                                                              (24)

Where: Cij = Cji denotes the elasticity tensor. 

In order to solve the last problem by using the finite element 
method, one adopted 2D meshing process (Figure 11): 

We can write:

i i i iX N X et Z N Z= =∑ ∑ 	                                                                                                         (25)

 

ε11  ≠  0 ε22  ≠  0 ε33  ≠ 0 ε23  ≠  0 ε13  ≠  0 ε12  ≠  0

Figure 6: The six different cases to be solved in order to calculate the homogenized 
elastic properties of the RVE.

The Young Modules (MPa) Poisson Coefficients Shear Modules (MPa)
E1=197500 ν13=0.4185  G13=G12=  4313.7 

E2=E3=14198 ν12=0.4188   G23=14356 
  ν23= 0.9154  

Table 2: The periodic RVE elastic parameters.

The Young Modules (MPa) Poisson’s Ratio Shear Modules (MPa)
E1=181798.75 ν13=0.40816305 G13=3825.38916

E2=16069.2964 ν12=0.44711088 G12=3838.76163
E3=14042.38992 ν23= 0.0984055 G23=10136.7716

Table 3: The random RVE elastic parameters.
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In the nodes, the corresponding functions of form will be: 

( )( ) ( )( ) ( )( ) ( )( )1 2 3 4
1 1 1 11 1 ; 1 1 ; 1 1 ; 1 1
4 4 4 4

= − − = + − = + + = − +N N N Nξ η ξ η ξ η ξ η         (26)

And the displacements:

i i i iu N u and w N w= =∑ ∑                                                         (27)
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Where: J is the Jacobean matrix. 

We can resolve (28) as:

* *
11 12

∂ ∂ ∂
= = +
∂ ∂ ∂xx
u u uJ J
x

ε
ξ η

 		                                                       (29)

Where: J11 and J12 are J-1 coefficients. 

;i i
i i

u N w Nu w
ξ ξ η η

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑ 	                                                (30)

The εzz and γxz (2εxz ) deformation will be obtained by the same way, 

therefore we can write: 

{ } 1 .

2

u

xx wA J
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w
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ε η
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 			                (31)

It denotes that:

{ } { }1 . . eA J B Uε − =         
     		                                                     (32)

Where [B]: the deformation-displacement matrix

Under these conditions, the elementary rigidity matrix will be 
written in the following form:  

[ ]
1 1

1 1
[ ] [ ] [ ] [ ] [ ] [ ]T Tk B B dV B B J d dε ε ξ η

− −

= ⋅ ⋅ = ⋅ ⋅ ⋅∫ ∫ ∫                  (33)

The numerical integration adopted for the equation (33), is the 
Gauss integration, which is written as following form:  

1

11 =−

= Φ ==> ≈ Φ∑∫
n

i i
i

I d I Wξ                                                                                                      (34)

Where: Wi are the Gauss weight and Φi are the Gauss points 

We can calculate the global stiffness matrix:

Eq. (21), (32), (33) and (34) give that

  
ε11 ≠ 0 ε22 ≠ 0 ε23 ≠ 0 

+4.207e+05
+3.858e+05
+3.509e+05
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Figure 7: Results of simulation of the RVE, Von Mises constraint in the different loads (plan y z).
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Figure 8: The results of simulation of the RVE, Von Mises constraint in the different loads (plan y z).
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The resolve of (35) it applied by imposing a displacements loading 
and putting a boundary conditions for each load see Figure 12.

The approach of finite element simulation in Matlab gives the 
following results:

222220 94570 0
94890 221480 0

0 0 4320

 
 =  
  

C                                                                                                     (36)

Exx =181700 MPa     Eyy=181100 MPa
G=4320 MPa          νxy=0.42

Comparison and discussion of the threetsimulation’s methods, 
3D periodic, 3D random and 2D programing simulation approach: 
The results obtain for both 3D periodic and random model are reported 
in Table 4. The fluctuation in the Young modules and the Poisson’s ratio 
among the two models are as follow: the relative error for E2 reaches 

13% and, for the Poisson’s coefficients ν12 and ν13 it is respectively 2.47% 
and 6.76%. These results converge with the 2D programing simulation 
approach for the simple traction following the (OY), this results was 
reported in the work of D.Trias et al., [19], where the Young modulus 
present a differentiation of 12% and 6% for the Poisson’s ratio.

The difference between the random and the periodic RVE in Shear 
Modulus G13 and G12 is roughly 11% and 29.39% for G23. Concerning 
the Poisson coefficient ν23 the relative error between the two models is 
around 89%. 

For the periodic RVE, we could observe that the YOUNG modulus 
E2 and E3 have a regular behavior in the tow transverse directions.  
But for the random model, the difference between the two modulus 
E2 and E3 it is much remarkable. This difference is generally due to the 
arrangement of the fibers and the irregular of the distance inter-fibers. 
Also the variation of the value of E2 of 13% and the value of G23 of 
29.39 % has been observed in the two cases random and periodic RVE. 
This deference is due to the closeness between fibers in the random 
RVE who will give a more resistance to the model. 

The 2D programing simulation approach, of the yarn structure, 
gives very close results with random RVE cell of the yarn: (i.e.: E Random 

RVE=181798 MPa and E2D=181700 MPa). The results of the distribution 
using Von Mises constraint in yarn it is show in Figures 5 and 6, they 
present a large difference between the two types of RVE. Indeed, the 
random model gives a more real response than the periodic model. The 
analytic values resulting from The Voigt model and the Reuss model 
[20,21] gives: 

1
/ /

−
 = + t f f m mE V E  V E                                                                                                                     (37)

. .= +l f f m mE E V E V                                                                                                                               (38)

Binarization and filtration of the
microstructure of the yarn

Solving the homogenization’s
problem

Regular mesh and EF Simulation of the yarn

Extraction of the Cij
coefficients

Figure 9: The approach of 2D simulation approach of the yarn. 
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Figure 10: The micro structure of the yarn. 
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Figure 11: The 2D unit’s mesh.

 ε11  ≠ 0 ε22  ≠ 0 ε12  ≠ 0

Figure 12: The three different cases to be solved for the homogenized elastic 
properties of the yarn.
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Shear Module and poisson’s ratio are calculated by the mixtures 
law as follow:

. .= +lt f f m mõ õ V õ V                                                                                                                                  (39)
1

/ /
−

 = + lt f f m mG V G  V G                                                                                                                    (40)

The analytical results give:

E1 = 197000 MPa 

E2 = E3 = 7918.718 MPa 

 υ = 0,42

Particularly, the analytic results prove that the 2 D programing 
simulation approach gives a good prediction of the periodic model of 
E1 and poison’s ratio. 

Conclusions
The micro scale modeling approaches adopted in this work 

were permitted to extract the elastic behavior of the yarn of a woven 
composite material. The simulation of the periodic and random RVE 
provided that the yarn material is unidirectional. And according 
to the work of D. Trias et al., [13] where they used two types of 2D 
representative models (random and periodic), we can conclude that 
the periodic models could be used in some cases when the observed 
error is considered like negligible and no assessment for the material’s 
security. But this type of models cannot be adopted to calculate 
accurately material’s properties. The uses of periodic models could 
cause misjudges estimation (crack in the matrix and initiation of the 
damages), contrarily to the random models which can provide useful 
information for reliability analysis not achieved with periodic models. 
We have confirmed the numerical simulation by classical analytic 
models (Reuss and Voigt). The 2D programing simulation approach 
on Matlab, of the yarn structure, gives very close results with random 
RVE cell of the yarn; the results of 2D simulation in the Matlab 
software demonstrate that the modeling by random RVE convenient 
better with this kind of materials. The results obtained from the 2 D 
programing simulation approach could be an advantage for multiscale 
simulation approach because it could be integrated easily in the meso-
scale modeling of the woven fabric composite. And with that we could 
minimize the time of simulation about 50 % and minimize the error 
due to transition between simulations scales. This study is promotive 
and it requires an advance model in damage and in failure case. 
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Variables
Young Modulus The share Modulus The poison’s ratio

E1 E2 E3 G23 G13 G12 ν23 ν13 ν12

Periodic RVE 1.9750 e+005   1.4198 e+004  1.4198 e+004  1.4356 e+004  4.3137 e+003  4.3137 e+003  0.9154 0.418 0.418   
Random RVE 181798 16069 14042 10136 3825 3838 0.098 0.408 0.447

Difference in (%) 7,95 13,18 1,096 29,39 11,32 11,01 89,25 6,76 2,47

Table 4: Computation of effective properties for the periodic and random model of the yarn.
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