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Introduction
Stroke is the 4th cause of death and a leading cause of long term 

disability in the United States. Forty percent of stroke patients 
experience moderate functional impairments and 15% to 30% severe 
disability [1]. The standard treatment for sub-acute and chronic stroke 
rehabilitation is a combination of physical, occupational and speech 
therapy, but still, after completing standard motor rehabilitation, about 
50–60% of stroke patients experience some degree of motor deficits [2], 
highly impacting the quality of life of patients and their families. Thus 
there is a substantial need for developing novel therapies.

Novel therapies aiming at improving motor recovery have 
been investigated by many researchers. Several studies have 
demonstrated that noninvasive brain stimulation (NIBS) techniques 
such as transcranial direct current stimulation (tDCS) and repetitive 
transcranial magnetic stimulation (rTMS) can induce brain plasticity 
and have treatment effects in post-stroke motor recovery [3,4]. 
However, the clinical significance of these outcomes is somewhat 
modest and, despite some promising results, two recent systematic 
reviews suggested that more information is needed to support the 
use of rTMS and tDCS in stroke recovery [5,6]. With the same aim, 
amphetamines [7-9], levodopa [10,11], cholinergic agents [12,13] 
and SSRI’s [14-16] have been tested for motor recovery post stroke 
and have shown to improve motor learning and enhance motor 
recovery, however, also modestly. Current research suggests that both 
interventions – NIBS and pharmacotherapy- have a small treatment 
effect. While not proven, it is possible that by combining this two 
approaches a larger clinical effect could be achieved [17].

In this literature review we present the rationale behind 
this combined approach by reviewing both methods, NIBS and 
pharmacotherapy, independently and then we discuss the results of 
two available clinical studies that have already tested this combined 
therapy. 

Stroke and Cortical Plasticity
Neuroplasticity is the capacity of the brain to change and adapt 

itself in response to different environmental stimuli. During the past 
decade, a large number of studies have demonstrated that the cerebral 
cortex interconnections are modifiable by behavioral manipulations 
and motor tasks learning. Animal models have shown that skill 
learning is accompanied by structural changes in cortical neurons, 
like dendritic growth and arborization, synapse formation, increased 
synapse strength and subsequent increase in the size of cortical motor 
representations and thickening of the motor cortex [18,19].

After stroke, reorganization of the remaining healthy brain is the 
key for recovery to occur [20]. Several trials have indicated that the 
cerebral cortex undergoes functional and structural reorganization for 
weeks and months after injury with measurable compensatory changes 
[21]. Early recovery depends on the amount and time of resolution of 
the brain edema, the reperfusion of the ischemic penumbra and the 
impact that diaschisis had on different brain functions [20].  On the 
other hand, later recovery depends on the central nervous system 
(CNS) reorganization and plasticity [22]. 

Molecular alterations following brain injury also have an important 
effect in post stroke recovery. Studies have shown that excitability 
changes are related with down-regulation of Gamma-Aminobutyric 
Acid (GABA) receptors and enhancement of N-Methyl-D-Aspartate 
(NMDA) receptors, in both peri-lesional and remote areas [23]. 
These processes can extend for a longer period of time and are highly 
influenced by rehabilitation and other interventions. In fact, several 
studies have shown that interventions like pharmacotherapy and 
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NIBS, when used independently, induce significant changes in cortical 
plasticity.

If both interventions have positive but limited effects in motor 
recovery, it is possible that by combining them, a summatory effect 
can be achieved. In the next sections we will describe the information 
supporting the use of these therapies, and then the rationale behind 
combing them to obtain greater effects in cortical excitability and 
clinical outcomes. 

Non-Invasive Brain Stimulation for the Treatment of 
Stroke

Non-invasive stimulation of the brain has the capacity to modulate 
cortical excitability and induce brain plasticity. The mechanisms 
underneath these processes are not fully understood, but it’s known 
that in part, they are mediated by long-term potentiation (LTP) and 
depression (LTD). LTP is the phenomena observed when stimulation 
is delivered repeatedly to the brain and a robust neural excitability 
occurs, enhancing synaptic efficacy and postsynaptic excitability 
[24].  The mechanisms behind this include NMDA receptor activity, 
synaptogenesis and modulation of GABA activity [24]. In the 
counterpart, LTD occurs when synaptic efficacy becomes diminished. 
This is mediated by a reduction in NMDA receptor activity and an 
increase in GABA activity. These two mechanisms of synaptic plasticity 
can be used clinically with the purpose of incrementing or inhibiting 
brain activity in different areas of the motor pathways [25].

There are several models on how brain plasticity changes the brain 
responses after stroke and how NIBS can modulate them. The most 
accepted model until the date is the interhemispheric competition 
model, which states that by suppressing the over-activity on the 
unaffected hemisphere, we can enhance recovery by reducing the 
interhemispheric inhibition over the stroke hemisphere. Following 
this model, there are two main strategies to induce brain plasticity 
via LTP and LTD: 1) to increase cortical excitability in the affected 
hemisphere using either excitatory anodal tDCS or high frequency 
rTMS, and 2) to decrease the over activity that occurs in the healthy 
hemisphere, which causes further inhibition of the lesioned one by 
the process of transcallosal inhibition, using inhibitory low frequency 
rTMS or cathodal tDCS. In the following section we will address these 
techniques, and previous experience of their use in healthy subjects and 
in stroke rehabilitation [26]. 

Another theory recently proposed by di Pino et al. suggests a bimodal 
balance–recovery model that combines the idea of interhemispheric 
balancing and the structural recovery of the areas not directly affected 
by the stroke. This model suggests that, if NIBS is to be used to enhance 
motor recovery, then the technique and parameters should be defined 
according to the individual needs of patients depending on their 
lesion. This model, though very promising, still needs to be furthered 
investigated [27]. 

tDCS
tDCS has been widely tested in the last 2 decades for the treatment 

of neurological and psychiatric conditions.  It is now known that 
tDCS can be used to increase or decrease cortical excitability in the 
area of stimulation; thus can guide brain plasticity for the recovery of 
several neurological conditions [28].  In healthy subjects, anodal tDCS 
over the motor cortex facilitates neuronal firing and induces cortical 
excitability measured by an increase in the motor evoked potential 
(MEP) amplitude. In an opposite way, cathodal tDCS decreases 
neuronal excitability. The lasting effect of the modulation induced by 

tDCS and the occurrence of LTP or LTD depends on the parameters 
of the stimulation and the amount of stimulation sessions [29]. Taking 
these changes in cortical excitability to a clinical scenario, anodal 
tDCS was proven to enhance motor performance [30]  and learning 
when administered over the primary motor cortex. In the other hand, 
cathodal tDCS was found to have no effect [31,32].

In stroke patients, several studies have shown that increasing the 
excitability of the motor cortex using tDCS can  improve the motor 
performance and hand motor tasks [33]; and if administered for 7 days, 
its effects would be prolonged [34]. Most recent studies using functional 
magnetic resonance imaging (fMRI) also reported an increase in motor 
related activity and enhanced motor function after anodal tDCS over 
M1 in the lesioned hemisphere [35]. Furthermore, several studies 
have reported that inhibiting the contralesional hemisphere using 
cathodal tDCS on M1 can improve the motor recovery post stroke 
[36]. A recent study demonstrated that reducing the excitability of 
the intact hemisphere significantly enhanced motor learning in the 
paretic hand in stroke patients for up to 24 hours [37]. These results are 
consistent with another study that showed a significant enhancement 
of movement induced fMRI activity in the ipsi- lesional hemisphere 
after cathodal tDCS in the intact hemisphere [35].

It should be noted that, despite the positive studies mentioned, 
a recently published systematic review concluded that the evidence 
supporting the use of tDCS in stroke recovery is of low quality and that 
further research is needed. 

rTMS
Transcranial magnetic stimulation (TMS) delivered in a repetitive 

fashion has been seen to modulate neuronal firing and either excite 
or depress brain activity. In healthy volunteers, high frequency rTMS 
increased cortical excitability measured by a decrease in the motor 
threshold (MT) and an increase in the MEP amplitude and low 
frequency rTMS has been seen to depress cortical excitability and 
have the opposite effects in the MT and MEP [38-40]. The significance 
of these effects has also been demonstrated functionally in healthy 
subjects. In healthy volunteers, high frequency rTMS over M1 can 
improve motor learning in the contralateral upper limb but decrease 
motor performance in the ipsilateral extremity [41]. Following a 
similar mechanism, low frequency rTMS was found to improve motor 
function in the contralateral hand [42].

In stroke patients, several studies reported improvement in 
motor function [43] and significant improvement in disability ratings 
that lasted for up to 10 days after stimulation with rTMS [40]. More 
recent studies have also shown modest improvement in upper limb 
functionality, especially grip strength, range of motion and pegboard 
performance [44]. rTMS can also be delivered in the contralesional 
hemisphere in the intent of reestablishing the inter-hemispheric 
activation/inhibition balance. In stoke patients, several randomized 
clinical trials have been conducted and demonstrated that inhibiting 
the motor cortex in the contralesional hemisphere improves pinch 
grip, reduces simple and complex reaction times and improves the 
scores in several motor function assessments in patients with upper 
limb dysfunction [45-47]. 

Pharmacotherapy for Treatment of Stroke
In the interest of finding alternatives for motor recovery 

after stroke, several pharmacological interventions have also 
been studied and found beneficial. Animal and human studies 
indicate that functional reorganization of brain connections may 
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be pharmacologically influenced and that different substances can 
enhance motor rehabilitation in the sub-acute and chronic stages 
after stroke. The principle behind this concept is that the modulation 
of specific neurotransmitters or neurotrophic systems may facilitate 
neuronal plasticity and long term potentiation. The drugs that have 
been tested in this field are mainly amphetamines, dopaminergic 
agents, SSRI’s, cholinergic substances and selective nor-epinephrine 
re-uptake inhibitors. 

Studies in healthy volunteers demonstrated that amphetamines 
enhance the effects of motor training dependent plasticity and 
methylphenidate (MP) has been seen to increase the MEP amplitude 
[48]. Clinical trials conducted in patients with hemi-paretic stroke 
have showed significant improvement in motor performance [7] . 
These results were later confirmed by Crisostomo et al. and Sonde et 
al. in different studies [8,9]. However, more recent studies show mixed 
results [49]. It needs to be considered the disadvantage of amphetamines 
related to their side-effects. Patients treated by amphetamines can 
potentially show increase blood pressure and cardiac arrhythmias. 
Even though, some studies have shown positive results, the evidence 
is not enough to support the routine use of amphetamines for motor 
recovery after stroke. 

It has been determined that dopamine has the ability of modulating 
motor function. In a TMS study levodopa was seen to increase LTP-
like plasticity in magnitude and duration [50]. In another study, 
dopamine agonists had no effect on cortical plasticity, but haloperidol, 
a dopamine antagonist, suppressed LTP-like plasticity measured by 
the MEP amplitude [51]. In healthy humans, levodopa administered 
prior to motor training was found to have an enhancing effect in motor 
memory and hand activities of daily living [11,52]. A study results 
showed that motor function was significantly better in stroke patients 
who received levodopa and physiotherapy [10], however, a recent 
study showed just a trend for improvement in patients with stroke who 
received levodopa [53]. In the other hand, dopamine antagonists were 
seem to delay recovery [54]. These results were consistent in patients 
with sub-acute and chronic stroke [11]. More studies are needed in 
order to assess the efficacy of levodopa in post stroke recovery. 

Cholinergic agents have also been proposed to have an excitatory 
effect on the motor function. In healthy subjects the cholinesterase 
inhibitor rivastigmine, strongly increased the magnitude and duration 
of LTP- mediated plasticity [50]. This system has also been tested in 
several designs in stroke patients. It was demonstrated that motor 
memory formation with training was improved by tacrine (ACE- 
Inhibitor) but reduced with muscarinic antagonists [12,52]. A case 
study in a stroke patient showed dramatic improvement in the lower 
limb motor function as a result of treatment with donepezil and a 
subsequent trial showed gains in motor function scales in patients 
taking this drug [13]. More information that supports the positive 
effects of cholinergic drugs in post stroke recovery is needed. 

Serotonin has a well-known role in behavior and motor control. 
Serotonin modulating drugs have been tested in healthy volunteers and 
were seen to have an excitatory effect on cortical neurons, demonstrated 
by an increase in the MEP amplitude [15,55]. Several SSRI’s have been 
tested for motor recovery obtaining mixed results. Paroxetine showed 
an improvement in motor performance in healthy subjects and in 
patients with chronic stroke and the use of fluoxetine resulted in an 
increased activation of the motor cortex and better motor skills of 
the affected hand [14,15].  In the same way, fluoxetine was proven to 
be effective in conjunction with physical therapy for 3 months in the 
recovery on motor function post stroke, in independence and quality 

of life [16,56]. Despite these positive results, more information and 
larger sample sizes are needed to support the use of SSRIs in the clinical 
practice. 

Combined Therapy
The combination of non-invasive brain stimulation techniques 

with pharmacotherapy has been widely tested for the treatment of 
depression demonstrating its safety and obtaining positive results 
[57-60]. In the case of stroke recovery there is little evidence. With 
the knowledge summarized in this article, we propose a therapeutic 
approach for motor recovery  in stroke which can potentiate the 
mechanisms of plasticity: a combined therapy using drugs inducing 
neural plasticity in combination with noninvasive brain stimulation 
(NIBS)  techniques over the primary motor cortex in the affected 
hemisphere (high frequency rTMS or anodal tDCS) or inhibitory brain 
stimulation over the unaffected hemisphere (low frequency rTMS or 
cathodal tDCS), in order to facilitate motor recovery in patients within 
the sub-acute  to chronic stages post stroke. 

To understand the possible beneficial effects that pharmacotherapy 
might have in motor recovery when combined with NIBS as facilitators 
of plasticity, we would like to present the biological model of SSRIs 
in motor recovery as an example of this combined approach. Motor 
potentiation has been proved by pharmacological agents such as 
serotonin in both animals and humans [16]. Its neuro-modulatory role 
influences directly and indirectly the brain motor activity, as observed 
in imaging studies, where a single low dose of serotonin was able to 
modified motor activation maps in healthy subjects [14]. SSRIs enhance 
5-hydroxytryptamine (5-HT) neurotransmission by increasing 
serotonin availability in the extracellular space. Neurophysiologically, 
there is a relationship between the level of motor activity and the 
serotoninergic neuronal action across the raphe nuclei with modulation 
of the sleep-wake-arousal cycle, demonstrating the importance of this 
system in the onset/offset of motor behavior. Moreover, modulation 
of 5-HT neuron activity is closely linked to the glutamatergic and 
GABAergic inputs, thus, the serotoninergic systems facilitates the 
motor output. The 5-HT system coordinates the autonomic and 
neuroendocrine functions in the presence of motor demands by 
inhibiting irrelevant sensory information; consequently, transcranial 
neuromodulation may increase the activity of serotoninergic pathways. 
In addition, serotonin may enhance the activation of genes and cell 
second messengers in order to induce long-term facilitation and 
synaptogenesis between sensory and motor neurons and facilitation of 
synaptic strength [61].

An aspect that needs to be discussed when using a combined 
approach is the question of: who primes who? One possibility is 
that drugs, when given in combination with NIBS, are the ones who 
prime the effects that brain stimulation has on plasticity and cortical 
excitability, increasing the distant effects further away from the area of 
stimulation and spreading the effects to deeper structures of the brain. 
In the counterpart, another possibility is that NIBS is the one priming 
the effects of the drug administered. In this case we will see that by 
inducing neurotransmitter and receptor modulation, the effects of 
NIBS will become stronger in the localized network area where either 
rTMS or tDCS was delivered and modulating cortical excitability and 
plasticity (Figure 1). The possibility of a mutually enhancing effect, and 
the discussion of ‘who primes who’, is still a matter of debate and more 
information is needed to determine what is the real process behind 
the possible summatory effect these two approaches may have when 
combined. 
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Existing Research Findings
With the objective of supporting this rationale, we conducted a 

search in Pubmed, Cochrane and EMBASE databases for studies that 
assessed the effects of the combination of NIBS with pharmacotherapy 
for the motor recovery in stroke patients. We restricted the search to 
studies in humans and published in English. We did not restrict the 
search by the study design. We found two studies that met this criterion 
and their results are described below (Table 1).

A randomized controlled trial by Wang et al. [62] assessed the 
effects of MP in combination with tDCS in upper limb motor recovery 
in patients with sub-acute stroke. 9 patients within a month of an 
ischemic or hemorrhagic event were randomized to one of three 
groups: active tDCS- placebo MP, sham tDCS – MP or active tDCS- 
MP. The interventions were either sham or active tDCS at 1mA for 
20 minutes over the primary motor cortex (the anode over M1 on 
the lesioned hemisphere and the cathode over M1 on the the contra-
lesional one) in combination with real or placebo 1 time oral dose of 20 
mg of MP. The two main outcomes were cortical excitability measured 

by TMS and hand motor function assessed by the Purdue pegboard 
test. Hand motor function, measured before and after treatment, 
showed to be significantly different amongst the groups and a post-
hoc analysis indicated significantly better results in the group of the 
combined therapy than tDCS or MP alone. In contrast there was no 
significant difference in cortical excitability tested by TMS amongst any 
of the groups (Table 2) [62].

Kakuda et al. [63] performed an open label pilot study to assess 
the safety and the efficacy of combining levodopa with inhibitory 
rTMS in the contralesional hemisphere with occupational therapy 
for the enhancement of motor recovery in patients with chronic 
stroke. Five patients with ischemic or hemorrhagic stroke were 
admitted to the hospital to receive 15 days of the combined therapy. 
The intervention consisted in 100 mg/day of levodopa started 1 week 
before admission and 22 treatments sessions of rTMS and occupational 
therapy. Low frequency rTMS was administered to the contralesional 
M1 for 20 minutes in the morning and 20 minutes in the afternoon 
in combination with 2 hours of motor training in the morning and 
other 2 hours in the afternoon for 15 days. The treatment with levodopa 
continued for 4 weeks after discharge. The main outcomes in this study 
were the Fugl-Meyer Assessment score (FMA) and the Wolf-Motor 
Function Test (WMFT). The results were positive for the five patients, 
obtaining significantly increased scores in the FMA scores that were 
maintained for up to 4 weeks in four of the patients. In the same way, 
the sum of performance times for 15 tasks in the Wolf-Motor function 
test shortened over the treatment period and remained that way in all 
the patients (Table 3) [63].

Despite the fact that both studies described show positive results 
supporting the novel idea of a combined therapy for motor recovery 
in stroke, there are strong limitations that need to be mentioned. In 
the study by Wang et al. [62] data suggested that hand function may 
improve significantly with tDCS in combination with MP compared 
with wither therapies alone. Even though justified by the exploratory 
nature of this study, the short duration of the intervention, only one 
session of tDCS and one dose of MP, is an important limitation of 
this study. Also the sample size would need to be increased in order 
to assess the real effects of this intervention. The work by Kakuda et al. 
[63] also has several limitations to be mentioned. The small number of 
patients included and the open label nature of the study does not allow 
a real comparison to assess the efficacy of this treatment in comparison 

 
Figure 1: Who primes who dilemma. A) Long-distance NIBS effects can be 
induced by the action of the drug in deeper neural structures or B) Local 
network enhancement via drug interaction with the focal modulation offered 
by NIBS.

Study N of patients Age Sex (%female) NIBS technique Drug used Outcome

Wang QM, et al. 2014 9 52.8 22% tDCS MP Purdue pegboard (PTT) and 
TMS

Kakuda et al., 2011 5 61 40% Low Freq. rTMS Levodopa FMS and WMFT

Table 1: Research Studies: Combined therapy for stroke - NIBS plus.

Intervention Mean difference SE p value 95% confidence interval
tDCS+MP vs tDCS 0.89 0.22 0.017 0.21 – 1.56
tDCS+MP vs MP 1.0 0.22 0.010 0.32 – 1.68

tDCS vs MP 0.1 0.22 0.874 -0.57 – 0.79

Table 2: Post hoc multiple comparisons of the results in the performance on the Purdue pegboard test. RCT by Wang QM et al. on tDCS in combination with MP for motor 
recovery post stroke.

Test Pre-treatment (SD) Post-treatment (SD) 4 weeks after treatment (SD)
FMA (points) 40.4 (11.71) 43 (11.55) 44.4 (9.96)

Total performance time of 15 WMFT tasks (sec) 663.8 (467.81) 482 (403.91) 468 (397.30)
Total score of FAS of 15 WMFT tasks (points) 37.6 (9.60) 44.4 (8.23) 43.2 (9.12)

*There was no statistical analysis performed in this study.

Table 3: Comparison of pre, post and 4 weeks after the combined treatment of levodopa, occupational therapy and rTMS. Open label trial by Kakuda et al.*
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to other therapies. Also there is no statistical analysis performed to 
allow us to know if their results are statistically significant. The results 
of both of these studies need to be confirmed by larger randomized 
control studies.

Conclusions
After decades of research in the field, there is enough evidence to 

suggest that brain plasticity after stroke is the basis for function recovery 
and rehabilitation. Strategies like NIBS and several pharmacological 
approaches have been seen to induce brain plasticity and modulate 
brain activity in order to achieve functional goals. rTMS and tDCS 
have both been widely tested and have shown to have an effect in 
the enhancement of the effects of physical therapy for stroke motor 
rehabilitation. In the same way, pharmacological treatments such as 
SSRI’s, cholinomimetics, amphetamines and dopamine agonists have 
induced improvement in this population in experimental setups. It is 
not completely clear if NIBS could potentiate the action of CNS acting 
drugs or vice versa, but we can predict a summatory effect leading to 
functional improvement. New approaches are being addressed at the 
moment and hopefully new strategies will come up in the next few 
years. There is still the need of evidence that a combined therapy could 
induce brain plasticity more than one or the other alone and that this 
approach could have a positive effect on motor recovery compared to 
the conventional treatments.
Acknowledgement: This work was partially supported by a NIH grant 
(1R21HD079048-01A1).
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