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Abstract

We study the Maurer-Cartan equation of the pre-Lie algebra of graphs controlling the
deformation theory of associative algebras. We prove that there is a canonical solution (choice
independent) within the class of graphs without circuits, i.e. at the level of the free operad,
without imposing the Jacobi identity. The proof is a consequence of the unique factorization
property of the pre-Lie algebra of graphs (tree operad), where composition is the insertion
of graphs. The restriction to graphs without circuits, i.e. at “tree level”, accounts for the
interpretation as a semi-classical solution. The fact that this solution is canonical should not
be surprising, in view of the Hausdorff series, which lies at the core of almost all quantization
prescriptions.
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1 Introduction

The present article presents a combinatorial solution of the Maurer-Cartan equation in the Lie
algebra of binary graphs (g, [· , ·]) which controls the deformation theory of associative algebras:

[Z,Z] = 0, Z =
∑
Γ∈B

Γ

where B is the natural basis of graphs of g. The specific solution is “canonical” in the sense that
it does not depend on choices made iteratively to extend the solution from one degree to the
next, as in the cohomological context, nor it depends on a particular choice of contraction as in
[10].

The main result is that the underlying pre-Lie algebra multiplication, although not associa-
tive, has the unique factorization property. This in turn amounts to checking that the left and
right Gerstenhaber composition multiplicity coefficients are equal.

The deformation quantization of Poisson manifolds was brilliantly solved by Kontsevich in a
breakthrough article [14] which generated a “shower” of subsequent research papers.

Deformation quantization amounts, essentially, to the deformation of the usual classical com-
mutative product of classical observables into a non-commutative star product, accommodating
Heisenberg’s canonical commutation relations corresponding to the given Poisson structure en-
coding the classical dynamics of the classical system. Kontsevich solution used the sophisticated
machinery of perturbative quantum field theory, allowing to write the star product as a formal
power series. The difficulty of finding such a “continuation” of the expansion starting with the
commutative product as the zero term and the Poisson bracket as the first order term, resides
in the requirement of achieving associativity. This amounts to the fact that the coefficients
must satisfy a cocycle equation, which is combinatorial in nature. It is a fact that Kontsevich’s
coefficients WΓ [14] do not depend on the Poisson structure, and are Feynman integrals corre-
sponding to any closed form, not just for the specific angle form, chosen for definiteness [15] (see
also [17, 16]).

In [18] it was claimed that the initial value deformation problem in the pre-Lie algebra of
graphs has a canonical solution when restricted to graphs without circuits. It was first shown
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that the “coefficients problem” can be pulled back to the differential graded Lie algebra of
graphs ([18], §5), which leads to a certain universal framework for deformation theory with the
corresponding solutions of the Maurer-Cartan equation governing the space of deformations [1].

The claimed existence from [18] still relied on Kontsevich solution, i.e. on a star-product
corresponding to a general Poisson structure which conjecturally yields a star-product when
restricted to graphs without circuits. In [6] was realized that a different argument is needed
to prove the existence of a solution when restricting the class of graphs (quasi-isomorphic com-
plexes).

Further insight in the case of linear Poisson structures star products was given by S. Gutt
[7, 8] and studied in the light of Kontsevich’s approach by Polyak [21].

To get to the our main concern, the pre-Lie algebra of graphs, we will browse through
Kontsevich’s construction.

The combinatorial problem regarding the coefficients of a star-product is captured by the
“graphical calculus” we will call Kontsevich rule, a sort of a “dual Feynman rule”:

B : kG → D, B(Γ) = U(exp(α))

Here G is the class of graphs described below, (D, ◦,m) is some pointed pre-Lie algebra [20] with
a distinguished element m such that m ◦m = 0 and α is a Poisson structure (say on Rn):

α =
∑
i,j

αij∂i ⊗ ∂j

It is an antisymmetric 2-tensor satisfying the Jacobi identity,

αij = −αji,
∑

circular

{{f, g}, h} = 0

To a particular type of Poisson structure (e.g. constant/linear coefficients) corresponds a specific
class of directed labeled graphs: those graphs Γ which are not in the kernel of the Kontsevich
rule (kG/KerK). Once the “Problem” is pull back to graphs, it amounts to solving the equation

Z ◦ Z = 0, Z =
∑

n

Zn hn, Zn =
∑

Γ∈Gn,2

WΓ Γ

in a pre-Lie algebra with the composition ◦ of [21], defined independently in [18].
In this article we prove that if the pre-Lie algebra has the unique factorization property, a

canonical solution exists (Theorem 3.1), namely the “graph exponential”

Z =
∑
Γ

Γ/|Aut(Γ)|

We develop general tools to investigate this property and we succeed to prove that this is the
case for the class of Lie admissible graphs (Corollary 3.1). We also conjecture that the property
is still enjoyed by graphs without circuits.

The proof relies on the result regarding the multiplicity coefficient for the the graph insertion
at a boundary point as a pre-Lie operation (The Coefficient Theorem 3.1). A sort of Galois
theory relating the symmetry of graphs with their extensions emerges. In this article we have
dealt only with the simple case of unique incoming arrow case.

The article is organized as follows.
In Section 2 we recall the class of graphs [14] together with the pre-Lie composition from [18]

(see also [21, 11]). The core of the article is Section 3 which claims the “obvious solution” and
introduces the main properties of graph insertion used in the subsequent proof.

In Section 4 we discuss some related questions.
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2 The pre-Lie algebra of graphs

2.1 Lie admissible graphs

Let Gn,m be the set of orientation classes of Lie admissible edge labeled graphs of [21], p. 3.
An element Γ ∈ Gn,m is a directed graph with n internal vertices, m labeled boundary vertices
1, 2, . . . ,m such that each internal vertex is trivalent with exactly two descendants. The corre-
sponding arrows will be labeled left/right, defining the orientation class of the graph Γ up to a
transposition of the edge labeling in any two internal vertices [21]. The corresponding (graded
set) is denoted by G = ∪Gm, where Gm = ∪n∈NGn,m.

Note that this class of graphs, with only one incoming arrow at a node, corresponds to linear
Poisson structures, i.e. in such a case, graphs with more than one incoming arrow would yield
a zero contribution under the graphical calculus of derivations.

2.2 Graphical representation and notation

The order of the boundary vertices is “fixed” once and for all and will be represented graphically
by placing the boundary vertices on a oriented line.

The left/right labels on the outgoing edges at each internal vertex are implicit in a graphical
representation of a graph Γ, as embedded in the upper half-plane with edge ordering induced
by counter clockwise orientation. To “brake the symmetry” of graphs like c2 shown below, a
labeling should be used instead, if needed (not present below).

The graphs from Gn,2 with n = 0, 1, 2 internal vertices are the Bernoulli graphs b0, b1, b
L/R
2 or

the products of Bernoulli graphs (b2
1 = b1 · b1, to be defined shortly) as follows:
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The “connected” graphs (see 2.4) from Gn,3 are represented below.
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2.3 Antisymmetry and Jacobi relation

The Kontsevich rule has an obvious kernel since the Poisson tensor α is antisymmetric and
satisfies the Jacobi identity.

Since we solve the Maurer-Cartan equation “on the nose”, we do not assume the Jacobi
relation being satisfied at the level of graphs.

We will only consider the anti-symmetry relation ∼: a permutation of the edge order at an
internal vertex is equivalent to a change of sign. This relation includes (is compatible) with the
equivalence relation on edge labeling from the previous section §2.2. The resulting quotient is
denoted by H = kG/ ∼.
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2.4 Product of graphs

The product of graphs Gn,m × Gn′,m → Gn+n′,m (L-graph multiplication [11], p. 23; [21], p. 3,
[18], p. 5) is defined by identifying their corresponding boundary points (thought as embedded
in the upper half-plane). A graph is prime if by “cutting its boundary” it yields a “graph” with
only one component. For example, b2

1 = (b1)2, is not a prime graph.
Viewed as an “abstract graph” (incidence matrix), a graph is prime if the set of transition

paths has more then one component. We will also call such a graph, connected.
Note that the product is compatible with the equivalence relation on edge-labeled graphs,

and will be extended linearly on H.
The subspace generated by prime graphs is denoted by g. For this purpose the unit b0 is

considered prime.

2.5 Composition of graphs

The graph composition of [11] was introduced in [18] (p. 8) at the level of unlabeled graphs,
as the pullback of the Gerstenhaber composition through Kontsevich rule (see also [21]). It
acquires Leibniz rule in this process, since under Kontsevich representation the arrows carry
differential operators, while boundary vertices are “colored” by functions. For example,

b2
1 ◦ b0 = b2

1 ◦1 b0 − b2
1 ◦2 b0 = •b2

1 − b2
1 •+2(cR

2 − cL
2 )

where with • the only graph in G0,1 and •Γ denotes the “concatenation” of the corresponding
graphs.

Note that graph composition is compatible with the grading by the number of boundary
vertices (see [18], Appendix p. 22):

Γ ∈ Gn,m, degb(Γ) = m− 1, degb(Γ1 ◦ Γ2) = degb(Γ1) + degb(Γ2)

The above composition does not invary the class of Lie admissible graphs corresponding to linear
Poisson structures. Since we are interested in the graphs not in the kernel of the Kontsevich
representation, we will consider the truncation of the above composition due to the (orthogonal)
projection Pr from all admissible graphs to our class of Lie admissible edge-labeled graphs G.
The resulting composition of graphs is now an internal operation, still graded by degb.

Definition 2.1. The internal composition of graphs of G is defined as follows:

Γ1 ◦ Γ2 = Pr

[
m∑

i=1

(−1)(i−1)(m′−1)Γ1 ◦i Γ2

]
, Γ1 ∈ Gn,m, Γ ∈ Gn′,m′

where ◦i is the insertion of Γ2 at the ith boundary vertex of Γ1 using “Leibniz rule” i.e. summing
over all possible graphs where the “ith legs” of Γ1 lend on vertices of Γ2, internal and external.
The edge-labeling of the resulting graph is inherited from the edge-labeling of the two graphs
Γi.

Graph composition is compatible with the anti-symmetry relation ∼, inducing a graph com-
position on H ([21], p.5).

If Ii denotes the set of incoming edges at the ith boundary point of Γ1 and [n2], [m2] denote
the sets of internal and respectively external vertices of Γ2, then the “Leibniz rule” at the ith

vertex yields

Γ1 ◦i Γ2 =
∑

f :Ii→[n2]∪[m2]

Γ1 ◦fi Γ2



A canonical semi-classical star product 121

where ◦fi denotes the operation of replacing the vertex i with a disjoint copy of the set [n′], with
the edges e = (v → i) ∈ Ii now pointing to f(e). The “two components” of f , fi, fb denote their
co-restriction to internal and boundary vertices, respectively.

Now in order for the resulting graph to have internal vertices with only one incoming arrow,
the component fi must be injective, yielding the following formula for graph composition.

Lemma 2.1. If Γ1 ∈ Gn1,m1 and Γ2 ∈ Gn2,m2, then

Γ1 ◦i Γ2 =
∑

fi∪fb:Ii↪→[n2]∪[m2]

Γ1 ◦fi Γ2

where fi is 1:1.

We are now ready to prove that the “sum of all graphs” is a solution.

3 The canonical solution

We will study a particular solution of [Z,Z] = 0 in the graded pre-Lie algebra of graphs, with
possibly multiple incoming arrows at internal nodes. The tools developed apply to this level of
generality, yet we have been able to prove the key result of unique factorization only for Lie
admissible graphs (only one incoming arrow at a node).

Let Zk =
∑

Γ∈Gk,2
Γ/|Aut(Γ)| and Z =

∑
Zkh

k. In order to prove Z ◦ Z = 0 we need to
investigate the coefficients of∑

i+j=n; i,j≥0

Zi ◦1 Zj − Zi ◦2 Zj =
∑

Γ∈Gn,3

BΓ · Γ

where the coefficient BΓ is the difference between the coefficients (possibly zero) of the graph Γ
resulting from left and from right graph insertions (◦1 and ◦2): BΓ = BL

Γ −BR
Γ . To simplify no-

tation, for any Γ ∈ Gn,m, Γ denotes the corresponding normalized basis element, i.e. Γ/|Aut(Γ)|.
The normalized bases of kG is {Γ}Γ∈Gn,m .

The key fact (Proposition 3.1) is that ◦1 is “injective” (similarly ◦2), i.e. from the composition
Γ1 ◦1 Γ2 one can recover the operands Γ1 and Γ2 (“left groupoid structure” Γ : Γ1 → Γ2). In
general the pair (Γ1,Γ2) responsible for a summand Γ as a result of a left insertion ◦1 is different
from the unique pair yielding a sum involving Γ in a right insertion ◦2 (is the “left groupoid”
isomorphic to the “right groupoid”?).

Now comparing the two sums

Σk =
∑

i+j=n; i,j≥0

∑
Γ1∈Gi,2; Γ2∈Gj,2

Γ1 ◦k Γ2, k = 1, 2 (3.1)

corresponding to left, and respectively right insertions, we obtain that the respective coefficients
are equal (Corollary 3.3), a fact expected due to the left/right symmetry, and proved as The
Coefficient Theorem 3.1.

Theorem 3.1. If Z =
∑

Γ∈Gn,2
Γ, then [Z,Z] = 0.

To prove the above claims, we start with some preparatory lemmas.
For Γ ∈ G, let V in(Γ) denote its set of internal vertices, V bd(Γ) its set of boundary vertices,

and let V (Γ) = V in ∪ V bd. For u ∈ V in(Γ), let uL and uR be the left and right descendants of
u, respectively. Moreover, denote by (u, . . . , v) a directed path starting at u and ending at the
vertex v.
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Lemma 3.1. Let Γ ∈ Gn,2 with boundary vertices L and R. Then for each internal vertex u of
Γ, there is a directed path from u to L and a directed path from u to R

Proof. Define a partial order on internal vertices corresponding to the “flow” direction cor-
responding to the oriented edges (no loops!). Since any internal vertex has two descendants,
clearly there is a path starting at u ending at a boundary point, say L. Now not all paths may
end at L, since one may trace back last arrow and descend on the other arrow, until the end of
the path is not L.

In particular, binary graphs without loops are connected.

Remark 3.1. Note that the lemma may fail for graphs with loops, and for m = 0, 1, Gn,m contains
no binary admissible graph without loops.

Lemma 3.2. Let Γ ∈ Gn,3 and Θ be a normal subgraph of Γ, i.e. Γ/Θ is still admissible, with
at least one boundary point.

(i) If u ∈ V in(Θ) then uL, uR ∈ V (Θ) (Θ is a “total subgraph” of Γ).
(ii) If (v1, . . . , vt) is a path from an interior point v1 of Θ to a boundary point vt of Γ then

vi ∈ V (Θ) for all 1 ≤ i ≤ t (Θ is “geodesically complete”).

Proof. (i) follows from the fact that if u ∈ V (Θ) and say uL 6∈ V (Θ), then the edge (u, uL)
is not present in Θ. This would contradict that Θ is a binary graph, since it has an internal
vertex u with at most one outgoing edge. (ii) follows from a recursively application of (i), using
Lemma 3.1.

Our next goal is to prove that for each graph Γ ∈ Gn,3 there is a unique factorization in terms
of graphs with less boundary points: Γ = Γ1 ◦1 Γ2 (Γ = Γ′1 ◦2 Γ′2). Each such decomposition will
correspond to a “maximal factor” of Γ, so here too “maximal implies prime”!

Lemma 3.3. For Γ ∈ Gn,3 there are unique normal subgraphs of Γ, denoted αL(Γ), αR(Γ) ∈ Gn,2,
sitting on the leftmost, and respectively rightmost, two boundary vertices of Γ.

Proof. Recall that being normal ensures that the quotient Γ/αL(Γ) is still a binary (exactly
two descendants) admissible graph.

Suppose that Γ1 and Γ2 are two different normal subgraphs of Γ sitting on boundary points
1 and 2 of Γ (the other case follows by symmetry): bL

0 = {1, 2} ⊂ Γi ⊂ Γ. Then there exist an
internal vertex u of Γ1 but not in Γ2, since they cannot both equal bL

0 . Note that by Lemma
3.2, any path starting at u must end at a boundary vertex: 1 or 2.

Since Γ2 is normal, Γ′2 = Γ/Γ2 ∈ Gn,2 is a binary admissible graph. By definition, we have
u ∈ V in(Γ′2). However, there is no directed path from u to the right boundary vertex Γ′2,
contradicting Lemma 3.1.

Definition 3.1. For Γ ∈ Gn,3,

(i) EL
Γ = (Γ/αL(Γ)) ◦1 αL(Γ) and ER

Γ = (Γ/αR(Γ)) ◦2 αR(Γ),

(ii) CL
Γ =< EL

Γ ,Γ > and CR
Γ =< ER

Γ ,Γ > are the coefficients of Γ in EL
Γ , and ER

Γ respectively,
(iii) CΓ = CL

Γ − CR
Γ .

We now prove the key fact, that the left and right insertions are “injective”.

Proposition 3.1. Let Γ′,Γ′′ ∈ G•,2 and Γ ∈ Gn,3.

(i) If < Γ′′ ◦1 Γ′,Γ >6= 0, then Γ′ = αL(Γ) and Γ′′ = Γ/αL(Γ).
(ii) If < Γ′′ ◦2 Γ′,Γ >6= 0, then Γ′ = αR(Γ) and Γ′′ = Γ/αR(Γ).
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Proof. Let Γ′,Γ′′ ∈ Gn,2 be such that Γ ∈ Gn,3 is a summand of Γ′′ ◦1 Γ′. Then, there exists a
way to land legs from the left boundary vertex of Γ′′ onto the vertices of Γ′ so that the resulting
graph is Γ.

Since Γ′ is a normal subgraph of Γ sitting on the its 1st and 2nd boundary vertex, it follows
that Γ′ ⊆ αL(Γ). Moreover Γ′ is the maximal subgraph of Γ sitting on its 1st and 2nd boundary
vertex. For otherwise, αL(Γ) contains an internal vertex u of Γ′′. Now, by Lemma 3.1, there
exist a path PR

u from u to the second boundary vertex of Γ′′. By Lemma 3.2, all the vertices
(internal and external) in PR

u are in αL(Γ). In particular, the second boundary vertex of Γ′′

(which is the third boundary vertex of Γ) would also have to be in αL(Γ). This would contradict
the fact that αL(Γ) has to sit on the 1st and 2nd boundary vertex of Γ. Thus Γ′ = αL(Γ).

Since Γ is a summand of Γ′′ ◦1 Γ′ and Γ′ = αL(Γ), we have Γ′′ = Γ/αL(Γ); because ◦1 splits
the edges landing on the 1st boundary vertex of Γ′′ and land them on vertices of Γ′ = αL(Γ)
while collapsing αL(Γ) in Γ does the converse, recovering Γ′′.

Similarly, if Γ′,Γ′′ ∈ Gn,2 are such that Γ is a summand of Γ′′ ◦2 Γ′, then Γ′′ = αR(Γ) and
Γ′ = Γ/αR(Γ).

Regarding graph insertions as partially defined binary operations, the above result may be
rephrased as follows.

Corollary 3.1. Boundary graph insertions have the unique factorization property.

As an immediate consequence we obtain that the Γ-coefficients of [Z,Z] result from a unique
left/right composition, namely the composition of the unique normal maximal left/right sup-
ported subgraphs.

Corollary 3.2. BΓ = CΓ.

Proof. As a consequence of Proposition 3.1, BΓ = BL
Γ −BR

Γ represents the contributions from
a left composition of a unique pair of graphs (Γ1,Γ2) and of a right composition of a unique pair
(Γ′1,Γ

′
2). The corresponding multiplicities are CL

Γ and CR
Γ . Therefore BΓ = CΓ.

All that is left in order to prove the main theorem, is to prove that left insertions produce the
same coefficients as right insertions, i.e. CL

Γ = CR
Γ . Fix a summand Γ of a fixed pair of graphs

Γ1,Γ2, i.e. Γ has a non-trivial coefficient CL
Γ in the sum expressing the left boundary composition

Γ1 ◦1 Γ2. Then there is a left extension Γ2
π→ Γ→ Γ1, characterized by the insertion data π (see

section 3.2 for additional details), with Γ2 collapsing to the left boundary vertex of Γ1.

The Coefficient Theorem 3.1. After normalization, the non-trivial coefficient of Γ as a
summand of the left insertion operation of Γ2 in Γ1 is 1. Therefore, if non-trivial, the left/right
normalized multiplicities are

LΓ
Γ1Γ2

=< Γ1 ◦1 Γ2,Γ >= 1 =< Γ1 ◦1 Γ2,Γ >= RΓ
Γ1Γ2

where πL, πR are the left/right insertion data determined by the graph Γ.

We will first exploit the result, deferring the proof to section 3.2.

Corollary 3.3. (i) For all Γ ∈ Gn,3, its left multiplicity equals its right multiplicity: CL
Γ = CR

Γ .
(ii) ∀Γ ∈ G•,3, we have < Σ1,Γ >=< Σ2,Γ >.

Proof. Any Γ ∈ Gn,3 appears as part of (Γ/αL(Γ)) ◦1 α(Γ). The coefficient of Γ in both Σ1 and
Σ2 (Equation 3.1) is |Aut(Γ)|, i.e (i) holds, and the two sums are equal.
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It follows from Lemma 3.2 that BΓ = CΓ, which by the Corollary 3.3 vanish for all graphs Γ.
This implies that∑

i+j=n; i,j≥0

Zi ◦ Zj = 0

which yields Z ◦ Z = 0, concluding the proof of the Main Theorem 3.1.

3.1 Examples

Consider the graphs Γ1,Γ2,Γ3 ∈ G1,3, defined as follows:

Γ1 =
•

◦�� ◦
<<

<<
<<

<<

��◦ ◦◦

, Γ2 =
•

◦�
��

��
��

�

�� ◦
<<

<<
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<<

��◦

, and Γ3 =

◦ ◦◦�
��

��
��

�

��

•

◦�� ◦

(1) The constant Case. Any admissible graphs Γ ∈ Gn,3 can be expressed as Γ = Γr
1Γ

s
2Γ

t
3,

where Γi, i = 1, 2, 3, is as defined earlier. Thus

EΓ = br+s
1 ◦1 bt

1 − bs+t
1 ◦2 br

1

Since the coefficient of Γ in br+s
1 ◦1 bt

1 is
(
r+s

s

)
and the coefficient of Γ in bs+t

1 ◦2 br
1 is

(
s+t
s

)
then

CΓ =

(
r+s

s

)
t!(r + s)!

−
(
s+t
s

)
r!(s + t)!

= 0

In the normalized bases CL
Γ = CR

Γ = 1 (similarly for the other normalized coefficients below).
(2) The linear case with n = 2. There are 9 admissible graphs in G2,3: Γ2

1, Γ2
2, Γ2

3, Γ1Γ3,
tL2 , tR2 cL

2 , cR
2 , and c2.

For example, let Γ = Γ2
1. We have

αL(Γ) = b0, αR(Γ) = b2
1, Γ/αL(Γ) = b2

1, and Γ/αR(Γ) = b0

Thus, the coefficient of Γ is b2
1 ◦1 b0 − b0 ◦2 b2

1, which is CΓ = 1
2 −

1
2 = 0.

Similar computations take care of the other cases, yielding∑
i+j=2;i,j≥0

[Zi, Zj ] =
∑

Γ∈G2,3

CΓ · Γ = 0

3.2 Proof of Theorem 3.1

We prove that the multiplicity of a graph as a summand in a graph composition is only due to
their groups of symmetries.

Fix graphs Γ1,Γ2 and a summand Γ of their left boundary insertion as follows:

LΓ
Γ1Γ2

=< Γ1 ◦1 Γ2,Γ >6= 0

Since similar considerations apply to right insertions and to the corresponding coefficient RΓ
Γ1Γ2

,
we will use the generic notation CΓ

Γ1Γ2
.

Then there is a left graph extension Γ2
π→ Γ → Γ1, determined by the left insertion data

π : S ⊂ V1 → T ⊂ V2 defining the way the left leg arrows of Γ1 land on the vertices of Γ2,
internal or boundary. Each insertion data π yields an admissible graph Γπ. Its isomorphism
class will be called the type of the insertion.
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Recall that for a linear Poisson structure, the non-boundary portion of the insertion π is
injective.

Let D be the set of all insertion data π. For any π ∈ D, let DΓ ⊆ D be those insertion data
of the same type as Γ. Then

CΓ
Γ1Γ2

=< Γ1 ◦1 Γ2,Γ >= |DΓ| (3.2)

For any insertion data π, let Aut(Γπ, π) be the set of automorphism Aut(Γπ) that fix π.
We claim that the multiplicity of a summand in a left (right) boundary composition is given

by the following formula.

Lemma 3.4. We have

|DΓ| =
|Aut(Γ1)| · |Aut(Γ2)|
|Aut(Γπ, π)|

We delay the proof of Lemma 3.4 to make some general observations.
Consider the action τ of H = Aut(Γ1) × Aut(Γ2) on DΓ defined as follows. For all ρ =

(ρ1, ρ2) ∈ H and for all π ∈ D with π : S ⊂ V1 → Tπ ⊂ V2, we have

τ(ρ, π) = πρ : ρ1(S) = S → ρ2(Tπ) (3.3)
x 7→ ρ2πρ−1

1 (x) (3.4)

Claim 3.1. For π ∈ D, we have O(π) = {πρ : ρ ∈ H} = DΓπ , i. e the action τ is transitive on
DΓπ .

Proof. By definition, O(π) ⊆ DΓπ . Conversely, if Γπ′ ∈ DΓπ then there exits π′ ∈ D such that
Γπ′ ∼= Γπ. Hence, there exist φ ∈ Aut(Γπ) such that φ(DΓπ) = Γπ′ . Now let ρφ = (φ|Γ1

, φ|Γ2
) ∈

H; then ρφ(π) = π′ ∈ O(π). Thus DΓπ ⊆ O(π), and the claim follows.

Claim 3.2. For π ∈ D, we have

|Stab(π)| = | {ρ ∈ H : πρ = π} | = |Aut(Γπ, π)|

Proof. We show that there exist a bijection f : Aut(Γπ, π)→ Stab(π). For φ ∈ Aut(Γπ), define
f(φ) = (ρ1, ρ2) by first restricting φ to the unique normal subgraph Γ1, which therefore is
invaried by ρ1(φ) = φ|Γ1

Then, φ induces an automorphism of the quotient,

ρ2(φ) = φ|(Γ/Γ1) = φ|Γ2

Thus, f(φ) = (ρ1, ρ2) ∈ Stab(π) since, by definition of ρ1 and ρ2., ρ2πρ−1
1 = π. It is easy to see

that f is injective, since V = V1 ∪ V2.
To prove that f is surjective, let ρ = (ρ1, ρ2) ∈ Stab(π). Then there exist unique automor-

phisms φ1, φ2 ∈ Aut(Γπ) obtained by extending ρ1 and ρ2 in such a way that φ1|Γ2
= idΓ2

and φ2|Γ1
= idΓ1 . Thus φ = φ1φ2 ∈ Aut(Γπ, π) is such that φ|Γ1

= ρ1 and φ|Γ2
= ρ2, i.e.

f(φ) = (ρ1, ρ2). Since f is a bijection, we have |Stab(π)| = |Aut(Γπ, π)|.

Proof of Lemma 3.4. Using an orbit-stabilizer argument, (3.2), and Claims 3.1 and 3.2, we
obtain

CΓ
Γ1Γ2

= DΓπ = |O(π)| = |H|
|Stab(π)|

=
|Aut(Γ1)| · |Aut(Γ2)|
|Aut(Γπ, π)|

, (3.5)

proving Lemma 3.4.
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Proof of The Coefficient Theorem 3.1. For Γ ∈ Gn,3, let

ΓL
1 = αL(Γ), ΓL

2 = Γ/ΓL
1 , ΓR

1 = αR(Γ), and ΓR
2 = Γ/ΓR

1

Recall that

CL
Γ =< ΓL

1 ◦1 ΓL
2 ,Γ >, CR

Γ =< ΓR
1 ◦2 ΓR

2 ,Γ >, and CΓ = CL
Γ − CR

Γ

If CΓ 6= 0, then < ΓL
1 ◦1 ΓL

2 ,Γ >6= 0 and < ΓR
1 ◦2 ΓR

2 ,Γ >6= 0. Hence, there exist two insertion
data πL and πR such that ΓπL

∼= Γ ∼= ΓπR . Moreover, it follows from Lemma 3.4 that

LΓ
ΓL

1 ,ΓL
2

= |DΓ| =
|Aut(ΓL

1 )| · |Aut(ΓL
2 )|

|Aut(Γ, πL)|

RΓ
ΓR

1 ,ΓR
2

= |DΓ| =
|Aut(ΓR

1 )| · |Aut(ΓR
2 )|

|Aut(Γ, πR)|

Thus

CL
Γ =

LΓ
ΓL

1 ,ΓL
2

|Aut(ΓL
1 )| · |Aut(ΓL

2 )|
=

1
|Aut(Γ, πL)|

CR
Γ =

RΓ
ΓR

1 ,ΓR
2

|Aut(ΓR
1 )| · |Aut(ΓR

2 )|
=

1
|Aut(Γ, πR)|

Now it remains to show that if ΓπL
∼= ΓπR , then

|Aut(Γ, πL)| = |Aut(Γ, πR)|

In fact both automorphism groups equal Aut(Γ). In order to prove this, note that there are
(natural) restriction monomorphisms,

Aut(ΓL
1 )×Aut(ΓL

2 )← Aut(Γ)→ Aut(ΓR
1 )×Aut(ΓR

2 )

since ΓL
i , and respectively ΓR

i , are invaried as being (unique) maximal left normal subgraphs.

Lemma 3.5. We have Aut(Γ, S) = Aut(Γ, π), where S is the domain of π and Aut(Γ, S) is the
subset of automorphisms of Γ which invary S, i.e. Φ(S) ⊂ S.

Proof. It is enough to prove “⊂”, since the other inclusion follows from the definition of
Aut(Γ, π). If Φ ∈ Aut(Γ) and Φ(S) ⊂ S then

Φ(s→ t) = Φ(s)→ Φ(t) = s′ → Φ(t)

Since S has the property that any of its points has a unique arrow towards V2, the vertices of
Γ2, then Φ(t) = π(s′) = π(Φ(s)), i.e. πΦ = Φπ on S, and therefore Φ invaries π.

Now the unique factorization implies that the “Galois group” Aut(Γ, π) is the full automorphism
group.

Lemma 3.6. We have Aut(Γ, π) = Aut(Γ).

Proof. Let π be the left insertion data yielding Γ as a left extension (by unique factorization).
If Φ ∈ Aut(Γ) not only Φ invaries Γ1 and Γ2, but also S, the domain of π as being the set of
arrows lending on the left leg of Γ1. By the previous lemma, Φ invaries π.

Therefore Aut(Γ, πL) = Aut(Γ) = Aut(Γ, πR) is the stabilizer of the action and the normalized
coefficients are trivial or equal to 1.

This concludes the proof of Theorem 3.1.
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4 Conclusions and further developments

We proved the existence of a canonical solution of Maurer-Cartan equation in the pre-Lie algebra
of Lie admissible graphs, “on the nose”, without assuming the Jacobi identity holds.

The main fact used in the proof is the unique factorization property enjoyed by graph inser-
tions.

In this way a canonical solution is obtained, which is not surprising, in view of the Hausdorff
Lie series, which lies at the core of almost all quantization prescriptions. This opens a pertinent
question, the investigation of its relation with the other “universal solution”, the Haussdorf
series, living on the “base space”.

It is also natural to look for a physical interpretation of our solution as a (semi-classical part
of the) correlation function in the spirit of [3]. The lack of circuits means in physics jargon
finding a solution at “tree level”. This does not involve the quantum corrections due to circuits,
and relates to the effective action (see also [5]).

Although we investigate the linear case corresponding to Lie admissible graphs, we introduced
new tools which, we conjecture, may provide a proof of the general case.

For linear Poisson structures the structure of the Galois group of a left (right) extension is
simpler (subobject of the fibered product of Aut(Γ1) and Aut(Γ2)), since π, the insertion data,
is injective at the level of interior points, and a permutation of S is equivalent to an inverse
permutation of T . Nevertheless the “simplification” entailing the left-right symmetry (equal
coefficients) seams to be due to the lack of circuits, rather than, as one might expect, from
the one-incoming arrow property satisfied by the Lie admissible graphs (π injective on interior
points).

We believe that these are interesting topics for further study, revealing some of the relationship
between the mathematics and physics of quantum phenomena.
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