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Abstract
Atrial Fibrillation (AFib) is the most common cardiac arrhythmia, increasing in prevalence with age. AFib is often 

associated with structural heart disease and a substantial proportion of AFib patients lead to the significant morbidity, 
mortality, and cost. Thus, AFib is the most prevalent and costly health problems in the world and a major global 
healthcare challenge. 

This study presents a beat-to-beat AFib detection system to provide a healthcare system for AFib patients. For 
real-time Electrocardiogram (ECG) signals, the beat-to-beat AFib detection system consists of two methods in this 
study: an improved ECG R peak detection method and a beat-to-beat Gaussian voting AFib method. The improved 
R peak detection method proposes two different optimization algorithms to replace the knowledge-based theory in 
previous R peak detection method that consists of three stages: band-pass filter, interesting blocks and threshold. 
The beat-to-beat Gaussian voting AFib method extracts features based on the R-R intervals to identify the possibility 
of AFib. Based the R-R intervals, the heart rate can be estimated, and the system can detect the tachycardia and 
bradycardia in addition. The results using the MIT-BIH database show that the proposed R peak detection method 
can detect beats with 99.9984% accuracy in testing data. Clinical testing reveals that the proposed beat-to-beat 
Gaussian voting AFib method is about 94.72% accurate and 98.11% sensitivity for 6 normal subjects and 6 AFib 
patients.

Keywords: Atrial fibrillation (AFib); Electrocardiogram (ECG); 
Optimization algorithm; R-R interval

Introduction
Atrial fibrillation (AFib) is the most common cardiac arrhythmia 

and affects nearly 1% of the population. Its prevalence increases with 
age: it is relatively infrequent in those under 40 years old, but occurs in 
up to 5% of those over 80 years of age. Normal people have a resting 
heart rate of between 60-80 beats per minute. But, the atrium of AFib 
patients contract rapidly and irregularly and produce a heart rate of 
between 400-800 beats per minute. Fortunately, the atrioventricular 
node compensates for this activity; only about 1 or 2 out of 3 atrial 
beats pass to the ventricles [1]. 

A typical AFib shows a rapid irregular tachycardia in which 
recognizable P waves are sometimes absent [2]. The ventricular rate in 
patients with untreated AFib is generally 110 to 180 beats per minute. 
In elderly patients, ventricular rates in untreated AFib are typically 
slower. Recent data from the Framingham study indicates that Chronic 
Heart Failure (CHF) is associated with a 4.5- and 5.9-fold risk of AFib 
for men and women, respectively [3]. Apart from the epidemiological 
data, most evidence on the prevalence of AFib in heart failure patients 
stems from analysis of a number of clinical trials in heart failure with 
populations conducted within the last 10-15 years. The AFib might 
have no detectable cardiovascular disease. Hemodynamic impairment 
and thromboembolic events related to AFib patients included in these 
trials were selected for different purposes, which are reflected in the 
varying prevalence of AFib. In addition, AFib is often associated with 
structural heart disease and a substantial proportion of AFib patients 
lead to the significant morbidity, mortality, and cost, which make AFib 
become a major global healthcare challenge [4]. 

Since the QRS complex is the most prominent feature of an ECG 
signal and the least sensitive to muscle movement, several methods 
have been reported for AFib detection based on R-R intervals (RRI) 
irregularity. Logan and Healey used the histogram of variance of 
RRI to identity AFib [5]; Tateno and Glass utilized a histogram 
of the difference between successive RRI [6]. Other accomplished 

methods, such as the coefficient of variation and Kolmogorov-Smirnov 
testTateno and Glass) [6], Markov models [7], neural networks [8] and 
Hidden Markov Models [9], are all proposed to have a robust detection 
results in AFib identification. Given the chaotic pattern, it is unlikely 
to model the exact behavior of R-R irregularity during AFib. All the 
methods mentioned above are based on the fact that the irregular R-R 
intervals of AFib can be expressed in a typical pattern of R-R interval 
distribution, which could be used to differentiate AFib from non-AFib 
rhythms. Besides, for paroxysmal AFib, the duration of AFib might 
be as short as 10 seconds. By using fewer R-R intervals, the algorithm 
has more chances to detect the symptom. Therefore, the sooner the 
reaction time or the fewer R peaks usage can make the expert system 
more efficient. 

This study attempts to develop an intelligent expert system with 
a built-in abnormal ECG detection mechanism to facilitate diagnosis 
and management of patients with AFib and other rhythm disorders 
(tachycardia and bradycardia). The main purpose of this study is to 
establish a new method for real-time AFib detection for a quick and 
concise performance, which can be embedded to mobile or table tablet 
personal computer (PC) applications to advance a tele-health system.

The remainder of this paper is organized as follows. In Section 2, an 
improved ECG R peak detection method and a beat-to-beat Gaussian 
voting AFib method are described. Section 3 compares the results 
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obtained from obtained from R peak detection and against previous 
studies and discusses the performance of Beat-to-beat AFib detection 
system. Finally, Section 4 provides concluding remarks.

Methodology
The beat-to-beat AFib detection system consists of two parts for 

real-time clinical ECG signals: an improved ECG R peak detection part 
(Figure 1A) and a beat-to-beat Gaussian voting AFib part (Figure 1B). 
In the following sub-sections, the present study introduces the beat-to-
beat AFib detection model consists of two parts in detail.

The improved ECG R peak detection method using 
optimization algorithm

This study adopts the two different optimization algorithms to 
replace the knowledge-based theory in proposed QRS peaks algorithm 
[10]. This study adds order of filter (N) into the band-pass filter. Thus, 
this study adopts two optimization algorithms to produce these six 
parameters (N, F1, F2, W1, W2 and β).

PSO algorithm: Particle swarm optimization (PSO) was proposed 
by Kennedy and Eberhart [11] according to the behaviour of birds. PSO 
is based on population search concept to explore the optimal solution. 
Because the movements of particles reference the global best position 
and past best position of particle, all particles will move towards the 
current global best position aggregately. Particles change their position 
continuously and update their best position until the terminating 
condition or the optimal solution of the problem is reached.

PSO is constructed on the basis of flocking behaviour in birds or 
fish. PSO assumes that birds foraged in a regional context where there is 
a food source (the position of best solution). Because birds don’t know 
the position of food source, birds search within the region randomly 
in accordance with swarm intelligence. Each bird communicates 
experience of searching food source with each other thus birds move 
towards food source gradually. The searching behaviours of particles 
can move toward a new direction according to two kinds of experiences, 
one is cognitive model, and other is social model. In cognitive model, 
the locations of particle’s optimal solution are records by itself, which 
is called personal best position (pb). In next generation, each particle 
moves on the basis of its own best position (pb). In Social model, 
particles share their location information with each other. The global 
best solution (gb) can be obtained by the fitness values of particles.

Canonical PSO: The entire population of PSO is composed 
of particles. The position of each particle denotes Xid, where i is the 
number of particle in population and d is the dimension of particle. The 
position of particle Xid is adjusted using following equation:

( 1) ( ) ( 1)+ = + +id id idx t x t v t                                                        (1)

where Vid is a velocity of each particle to determine the moving 
direction of particle and can be depicted as follows:

Vid (t+1) = w * Vid (t) + c1* r1* (pbid (t) - xid (t+1)) + c2* r2* (gbid (t) - xid 

(t+1))                                                                                                                (2)

where Vid (t+1) is new updated velocity of particle; Vid (t) is old 
velocity of particle; Xid (t+1) is new updated position of particle and 
Xid (t+1) is old position of the particle. t is the number of iteration. 
w is inertia weight and influences the convergence rate of PSO. PSO 
can control to adjust the influence of Vid (t) on the Vid (t+1). gbid (t) 
is the global best particle and pbid (t) is the personal best particle. C1,2 
are confidence factor value for swarm. r1,2 are random number between 

0 and 1 and can ensure the diversity of the particles in population. 
Equation (1) and (2) can regarded as the canonical PSO [12].

Standard PSO 2011: Recently, the last standard PSO (SPSO-2011) 
has been defined [12]. In SPSO-2011, while particle position Xid is 
update by Equation (1), velocity is revised as following equation:

( 1) w ( )
( ( ), ( ) ( ) ( )

+ = × +

− −
id id id

id id id id

v t v t H
G t G t x t x t

                                                       (3)

( ( ) ( ( ) 1 1 ( ( ) ( ))
( ( ) 2 2 ( ) ( )))( )

3

+ + × × −
+ + × × −

=

id id id id

id id id
id

x t x t C r pb t x t
x t C r Gb t x tG t

                                             (4)

where Hid (.) is hypersphere function and ‖. ‖ is the absolute value 
function. Parameter settings are defined in the study of Zambrano-
Bigiarini et al. [12]. Swarm confidence factor c1 and c2 equal to 0.5 + ln 
(2) and inertia weight w equals to 1⁄(2 ∗ ln( 2)).

DE algorithm: Storn and Price proposed DE in 1995 [13]. DE 
produces new offspring by using three basic schemes: mutation, 
crossover, and selection. These schemes are different from those in the 
GA. DE adopts mutation to converge evolution, utilize crossover to 
control the information exchanged during convergence, and employs 
selection to verify the success of the convergence. In 1996, DE solved 
the numerical problems discussed during the first IEEE Congress on 
Evolutionary Computation (CEC) conference [14]. Furthermore, 

Figure 1: Beat-to-beat AFib detection system architecture.
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the DE algorithm and its variants have been achieving competitive 
rankings in various IEEE CEC conference competitions [15,16]. 

In general, three type of vectors was defined in DE algorithm: donor 
vector Vi,G, trial vector Ui,G, and target vector Xi,G. Vi,G is produced by 
mutation, Ui,G is generated using crossover, and Xi,G is the current 
vector of the population. There are three parameters in DE algorithm: 
population NP, crossover control rate Cr, and amplification factor of 
the difference vector F. Each member in the population is regarded as a 
D-dimensional parameter vector. In order to contain the entire search 
space, the population in the DE algorithm is initialized far. In the DE 
algorithm, a vector is represented by Xi,G, where i=1,2,3,…,NP and G 
is the generation number. This study individually illustrates these three 
basic schemes. 

Mutation: The DE algorithm adopts mutation to change the 
vector’s location. Each mutation strategy has a characteristic approach 
to change a vector [14,17,18]. The formula for mutation is the linear 
combination of the existing vectors. The mutant vector is the donor 
vector. An initial individual Xi,G of Spop is generated randomly from a 
uniform distribution within the decision space D. At each generation, 
for an individual Xi,G, three distinct individuals Xr1,G, Xr2,G, and Xr3,G are 
pseudorandomly extracted from the population. The vector Xi,G=[Xi,1,g, 
Xi,2,g, Xi,3,g,….,Xi,D-1,g, Xi,D,g] is the target vector. According to the DE 
logic, the donor vector Vi,G of the ith population member is generated 
through mutation as

1 1, 1 1,G 2 3,G, ( , ), + = + =+ + −G r GG G r r rVi X F X XVi X                       (5)

where F ∈ (0,2) is a scale factor to control the length of the 
exploration vector (Xr2,G-Xr3,G). Random indices are r1, r2, r3 ∈ {1, 
2, 3,…,NP}, i ≠ r1 ≠ r2 ≠ r3. The mutation strategy in (1) is known as 
DE/rand/1 [14]. Other variants of the mutation strategies have been 
subsequently proposed [17,18]:

-DE/best/1:

1 1, 2,G, ( )+ = + −G best r G rVi X F X X                                                       (6)

-DE/current to best/1:

1 ,G ,G ,G r1,G 2,G, ( ) ( )+ = + − + −G i best i rVi X F X X F X X               (7)

-DE/current to rand/1:

1 ,G r1,G ,G r 2,G 3,G, ( ) ( )+ = + − + −G i i rVi X F X X F X X (8)
-DE/rand to best/1:

1 1,G best,G ,G r 2,G 3,G, ( ) ( )+ = + − + −G r i rVi X F X X F X X            (9)

where Xbest is the solution with the best performance among the 
individuals of the population.

Crossover: The crossover strategy [19] can control the inherited 
components from the mutant vector to a target vector. When a 
provisional offspring is produced through mutation, each gene of 
individual Vi,G+1 is exchanged with the corresponding gene of Xi,G with 
a uniform probability to generate the trail vector 

, ,1,G ,2,G ,3,G i,D 1 i,D,G[ , , ,..., u ,g, u ] :−=i g i i iU u u u

{, 1 , ,G , , 1, ,

(0,1)
+ +=

≤ =
i G i j otherwise i j G j

rand

U x v rand

Cr or j j
                                              (10)

where randj (0,1) is a random number between 0 and 1. The 
parameter j is the index of the gene and j=[1, 2, 3,…,D− 1,D]. jrand is an 

integer randomly chosen from 1 to D. Cr ∈ [0,1] is a constant influencing 
the number of elements to be exchanged through crossover. Because of 
the range of jrand, Ui,j,G, always differs from Xi,j,G and i=1,2,3,…,NP. Equ. 
(10) is famous as uniform binary crossover. 

Another crossover stagey is exponential crossover [20], which is 
similar to the two-point crossover strategy in which the first cutpoint 
l is randomly chosen from [1,D] and the second point is decided such 
that L consecutive components are chosen from the mutant vector. The 
trail vector Ui,G=[ui,1,g, ui,2,g, ui,3,g,…., ui,D-1,g, ui,D,g] is created as follows:

{, 1 , , 1, for

1 ... 1
+ += = 〈 〉 +

〈 + 〉 + + 〈 + − 〉
i G i j G otherwise D

D D

U v j l

l l L
                                                (11)

where i=1,2,3,…,NP, j=1,2,3,…,D, and 〈 〉D is the modulo function 
with modulus D, and 〈j〉D is j of j ≤ D and j − n if j > D. Price et al. 
[21] reported that Prob(L=h)=(1–Cr)Crn-1 corresponds to a geometric 
distribution, the discrete counterpart of the continuous exponential 
distribution. This study derives (8) and (9) through the aforementioned 
exponential crossover.

{ , , 1 , exp
, 1 , , ,

+ ≤
+ = i j G iv rand Cr Cr Cr

i G Xi j G otherwiseU                                                (12)

{ rand rand

rand

j j D, j j
j j ,exp − + <
−= otherwiseCr                                                         (13)

where jrand is an integer and randomly chosen between 1 and D 
and randCri ∈ [0,1) is a random number. The parameter expCr is the 
exponent of Cr. 

In binomial crossover, Cr explicitly determines the probability that 
a component will be replaced with a mutated component. By contrast, 
in exponential crossover, Cr determines the number of components to 
be mutated.

Selection: New members in DE are formed using the selection 
strategy [19]. The selection strategy compares the fitness value of the 
trial vector Ui,G+1 with that of the target vector Xi,G. The vector with the 
best fitness value is selected as a new member in the population. The 
following equation is used for selecting the fitness value:

{ , 1 , 1 ,G

i,G

, ( ( ) ( )
, 1 X ,

+ + ≤
+ = i G i G iU if fitness U fitness X

i G otherwiseX                                              (14)

where the fitness () function is the fitness value of the objective 
function, and Xi,G+1 is the new offspring in the DE algorithm. 

In the DE algorithm, several mutation, crossover, and selection 
strategies are available. This study adopts following six strategies in 
DE algorithm [22] to obtain parameters in R peak detection algorithm: 
1) DE/rand/1. 2) DE/local-to-best/1. 3) DE/best/1 with jitter. 4) DE/
rand/1 with per-vector-dither. 5) DE/rand/1 with pergeneration- 
dither. 6) DE/rand/1.

The revised ECG R peaks detection method: This study adds order 
of filter (N) into the band-pass filter in previous study by Elgendi [10]. 
The ECG signal is processed separately with the following sub-steps in 
the detection method.

Bandpass filter: The aim of band-pass filtering is to remove the 
baseline wander and high frequencies that do not contribute to QRS 
complex detection. The band-pass filter is designed using Matlab 
function “designfit” (Matlab signal processing Toolbox), which need 
to set the type of filter, order of filter, F1, F2 and sampling rate. In 
this study, the type of filter is band-pass IIR filter and sampling rate 
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is obtained from training and testing data. Rang of order of filter is 
from 2 to 30 and its value need to be an even number. F1 is the starting 
frequency and the range is from 1 to 10. F2 is the cut-off frequency 
and the range is from F1+10 to 25. F1 affects the value of F2. The slop 
of filter, which described by how many decibels the filter gain drops 
off per (logarithmic) frequency interval above the cut-off frequency, 
depends on the order of the filter and as a general rule for filter. The 
slope increases by 6.02 ∗ N⁄2 per octave for the order of filter N.

Squaring function: The function is to square the filtering signals 
as show in Equation (15) and enhance the large values and boost high-
frequency components. 

2[ ] ( [ ] )=y n x n                                                                                          (15)

where x[n] is the original ECG signal. In the all equations, n is the 
data point.

Generating blocks of interest

Blocks of interest can be produced by two event-related moving 
averages: MAQRS and MAQRS. MAQRS is used to extract the QRS features 
and calculated by Equation (16).

MAQRS can smooth out multiple peaks to emphasize and extract 
the QRS area. MAone Beat is extracted the QRS’s beat and calculated by 
Equation (17).

1
1

1

1[ ] ( [ ( 1) / 2]

...[ ] ... [ ( 1) / 2])

= − −

+ + + + −

QRSMA n y n W
w

n y n W
                                                   (16)

2
2

2

1[ ] ( [ ( 1) / 2]

...[ ] ... [ ( 1) / 2])

= − − +

+ + + −

one BeatMA n y n W
w

n y n W
                                                (17)

where W1∈ [20,21,...,40], W2∈ [ 200,201,...,250] and y[n] is the 
squared ECG signal. The W1 and W2 are the estimated duration of QRS 
complex and one heartbeat. In order increase the accuracy of detecting 
QRS complexes in noisy ECG signals, the dynamic threshold value 
THR1 is calculated by offsetting the MAone Beat signal with α. The α is 
calculated by Equation (18).

α β
−

= ×Z                                                                                            (18)

where β ∈ [0, 0.01,..., 0.1] and ẑ is the mean of the y[n]. The THR1 
is calculated by Equation (19).

1 [ ] α= +one BeatTHR MA n                                                                       (19)

If the MAQRS is higher than THR1, this area can as an interesting 
block. The meaning of the interesting block is that this block contains 
the ECG features and noise.

Thresholding and detecting R peaks: If a width of interesting 
block is more than or equal to W1, it is classified as a QRS complex. On 
the contrary, the block is classified as a P wave, T wave or noise. The 
last procedure is to find the maximum value within each interesting 
block, which is classed as a QRS complex. Then the maximum value is 
considered as R peak. This study adopts optimization algorithm to find 
out the suitable sets of parameters (F1, F2, N, W1, W2 and β) in the 
revised ECG R peaks method.

Beat-to-beat Gaussian voting AFib method
Two indicators were defined in this model, including △RRIi and 

△△RRIi. △RRIi refers to the variation of consecutive RRI. △△RRIi. 
represents the difference of △RRIi-1 and △RRIi. Accordingly, a five-
heartbeat moving window can acquire three △RRIi and two △△RRIi. 
These five parameters were applied to construct a beat-to-beat 
Gaussian voting AFib method. Three normal subjects and three AFib 
patients were used to train this model. △RRIi distribution of AFib 
patients training data were shown in Figure 2. Apparently, the △RRIi 
distribution of AFib patients had a wider distribution in all parameters 
compared to normal subjects, which was a normal distribution (data 
not shown). A two-Gaussian fitting curve was used to fit the distribution 
as well as a normal distribution was applied to normal subjects. 

When an ECG signal started to receive, we can calculate the five 
parameters with a five-heartbeat moving window overlapped by four 
beats. Thus, the system can compute the data every heart beats to 
achieve a real-time monitor. Next, we applied the constructed beat-
to-beat Gaussian voting AFib method to estimate the probabilities of 
normal and AFib conditions. Each parameter had a comparative result 
between two probabilities that the higher the density won the voting 
and marked 1 point. Finally, these 5 parameters were summed as the 
final score for two conditions (normal subject and AFib patient) in a 
range of 0-5. System alarm as the event occurred when the score of 
AFib patient was greater than the score of normal subject (Figure 1B). 
In addition, the heart rate (HR) measures the number of heartbeats 
taken per minute and the formula for calculating the HR is was 60 
divided by averaged R-R interval of each 6 s. System alarm as the event 
(tachycardia and bradycardia) also occurred when the heart rate was 
smaller than 60 beats per minute (bpm) or bigger than 120 bpm.

Performance indexes

To evaluate the performance of the detection algorithm, we adopt 
two indices in this study. False negative (FN) indicates a failure to detect 
a cardiac patient. True positive (TP) is the total number of correctly 
detected cardiac patients. By using FN and TP, the sensitivity, accuracy 
and error rate can be calculated using (20)-(22).

Sensitivity (%)=(TP/TP + FN) × 100                                                  (20)

Accuracy (%)=(TP/Total beats) × 100                                                      (21)

Error rate (%)=100-Accuracy                                                                (22)

The algorithms were compared by calculating the numbers of TP 
and FN for each record. 

Figure 2: △RRIi distribution of AFib patients training data.
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Results
The improved ECG R peak detection

In this study, the proposed algorithms are implemented in R2015a 
on Intel (R) Xeon (R) CPU E5-26500 at 2.00 GHz. The MIT−BIH 
Arrhythmia Database (https://www.physionet.org/physiobank/
database/mitdb/) includes different shapes of QRS complexes and 
noise, which makes it the most suitable database to test the robustness of 
the developed ECG algorithms. Database contains 48 ECG recordings. 
This study uses only 42 ECG recordings because the remaining ECG 
recordings exhibit the considerable noise in ECG signal. These are 
very difficult judgment QRS complexes, even for humans. The data 
are stored on four-channel FM magnetic tapes. Channels 1 and 2 are 
the two-channel ECG signals. Channel 3 is the annotation channel 
recorded in a standard binary format, and channel 4 is a binary-
recorded timing track. All the recordings were sampled at 360 Hz with 
11-bit resolution over a 10-mV range. This study adopts leave one out 

cross validation (LOOCV) for data validation. LOOCV uses only one 
of the ECG recordings to as testing data, while the remainder are as 
training data. 

This study adopts the training data and optimization algorithms to 
calculate the optimized parameters in the above-mentioned improved 
R peak detection algorithm. Fitness function estimates by the accuracy 
between the real R peaks and estimated R peaks. Testing data and the 
optimized parameters, which are found out by optimization algorithms 
and training data, can calculate the accuracy between the real R peaks 
and estimated R peaks. 

All ECG recordings can regard as testing data once. Therefore, 
the above actions implement for 42 times and generate 42 different 
optimize parameters. This study adopts SPSO-2011, DE which has 
six different strategies to find out the optimize parameters in R peak 
algorithm. This study compares the error rates and computation times 
among SPSO-2011, DEs and knowledge-based theory in Table 1 and 
2. In SPSO-2011 and DEs, number of particle in population is 40. The 
topping criterion occurs when the error rate in algorithm is smaller 
than one in knowledge-based theory or the number of iterations is 
greater than 25. 

In original QRS peaks algorithm [10], the number of parameters 
is five (F1, F2, W1, W2 and β) and the order of filter is 10. Thus, 
knowledge-based theory can produce 34650 combinations and the 
computing operation spends 3 days. Table 1 shows that SPSO-2011 and 
DE/rand/1 spend shorter time than knowledge-based theory to find 
out the suitable parameters. Although the error rate of training data in 
SPSO-2011 and DE/rand/1 is little more than one in knowledge-based 
theory, two algorithms can obtain the minimum error rate of testing 
data. These results suggested that the combined parameters could an 
overfitting result after using knowledge-based theory. 

When the number of parameters increases from five to six, the 
number of combinations changes from 34650 to 381150 and it spends 
30 days. Table 1 shows that the knowledge-based theory takes a lot of 
time in trial and error and error rate is little less than other methods. 
Thus, Table 2 only compares the error rates and computation times 
among SPSO-2011and DEs when six parameters (F1, F2, N, W1 and 
W2) need to be obtained. The order of filter (N) affects the combination 
of other five parameters indirectly because the order of filter influences 
the slope of filter and applies to ECG signal first. In addition, the 
structure of the solution space of six parameters is different from one of 
five parameters. The results of Table 2 show that SPSO-2011 can obtain 
the best performance in error rate and computation times. The SPSO-
2011and DEs can obtain the high accuracy for detecting R peaks (error 
rate=0) expect testing data 113, 114, 208, 215, 231 and 232. In order to 
observe the details, Table 3 shows the error rate of those testing data 
among SPSO-2011and DEs. The results of Table 3 indicate that the 
SPSO-2011 is the best algorithm to improve R peak detection, which 
consist with the results of Table 2. 

As the above-mentioned results, the revised ECG R peaks detection 
method using SPSO-2011 can obtained the best performance. Thus, 
this study selects record 105 from the MIT/BIH database to compare 
this proposed method in this study with the previous study specially 
as shown in Table 4, because record 105 is the most difficult to 
analyse owing to a large induced noise factor and then widely used 
by researchers to test R peak detection algorithms. Table 4 shows that 
the proposed method has the highest positive prediction rate (100%). 
Table 5 compares the performance of various algorithms on all the 
records generated from the MIT/BIH database [23-33]. The proposed 
method can clearly achieve good performance.

Algorithms Data Error rate Time
Knowledge-based theory Training data 0.0236 ± 0.00346 3.92921 (day)
Knowledge-based theory Testing data 0.0030 ± 0.01000 0.2580

SPSO-2011 Training data 0. 0311 ± 0.0052 2.08E+04
SPSO-2011 Testing data 0.0026 ± 0.0110 0.2580
DE/rand/1 Training data 0.0358 ± 0.0217 2.13E+04
DE/rand/1 Testing data 0.0022 ± 0.0106 0.2100

DE/local-to-best/1 Training data 0.0271 ± 0.0094 2.13E+04
DE/local-to-best/1 Testing data 0.0076 ± 0.0236 0.2760

DE/best/1 with jitter Training data 0.0561 ± 0.0298 2.12E+04
DE/best/1 with jitter Testing data 0.0242 ± 0.1360 0.2010

DE/rand/1 with pervector- 
dither Training data 0.0441 ± 0.0262 2.12E+04

DE/rand/1 with pervector- 
dither Testing data 0.0190 ± 0.1078 0.2140

DE/rand/1 with 
pergeneration-dither Training data 0.0475 ± 0.0257 2.17E+04

DE/rand/1 with 
pergeneration-dither Testing data 0.0049 ± 0.0190 0.2730

DE/rand/1 either-
oralgorithm Training data 0.0304 ± 0.0152 2.12E+04

DE/rand/1 either-
oralgorithm Testing data 0.0220 ± 0.1116 0.2790

Table 1: The error rates and computation times among two optimization algorithms 
and knowledge-based theory. The meaning of bold type is the best algorithm for 
detecting R peaks.

Algorithm Data Error rate Time

SPSO-2011 Training 
data 0.0352 ± 0.0069 2.29E+04

SPSO-2011 Testing data 0. 0016 ± 0.0052 0.2402
DE/rand/1 Training data 0.1823 ± 0.0608 3.57E+04
DE/rand/1 Testing data 0.0095 ± 0.0412 0.2643

DE/local-to-best/1 Training data 0.1712 ± 0.0681 3.54E+04
DE/local-to-best/1 Testing data 0.0228 ± 0.1318 0.2405

DE/best/1 with jitter Training data 0.1804 ± 0.0645 2.89E+04
DE/best/1 with jitter Testing data 0.0030 ± 0.0083 0.2390

DE/rand/1 with pervector-dither Training data 0.1694 ± 0.0589 3.45E+04
DE/rand/1 with pervector-dither Testing data 0.0240 ± 0.1361 0.2397

DE/rand/1 with pergeneration-dither Training data 0.1718 ± 0.0578 3.59E+04
DE/rand/1 with pergeneration-dither Testing data 0.0030 ± 0.0111 0.2402

DE/rand/1 either-oralgorithm Training data 0.1912 ± 0.0674 3.40E+04
DE/rand/1 either-oralgorithm Testing data 0.0234 ± 0.1359 0.2405

Table 2: The error rates and computation times among SPSO-2011and DEs. The 
meaning of bold type is the best algorithm for detecting R peaks.
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Beat-to-beat AFib detection: Totally 6 normal (aged between 
52~76 years) and 6 patients (aged between 54~80 years) records were 
mixed and served as the testing data. Comparison and calculation 
was performed according to the recommendations of the American 
National Standard for ambulatory ECG analysers (ANSI/AAMI EC38-
1994). A true positive indicates that the algorithm successfully detected 
a true AFib episode and, on the contrary, a false negative indicates the 
fail of detection of AFib ECG. False positive represents a false AFib 
detection whereas true negative means normal subjects have nothing 
to be detected at all. Accuracy, Sensitivity and positive predictive value 
were used for further analysis. The recorded data was shown in Table 6. 

Twelve subjects (including normal and AFib patients) with 150 

trials each were test. Accuracy, sensitivity, specificity and positive 
predictive value were used to present system performance. Accordingly, 
the accuracy of this AFib detection model was 94.72%, followed with 
98.11% of sensitivity, 97.97% of specificity and 91.88% of positive 
predictive value. 

The results suggest that this system can offer a highly sensitive 
and specific monitoring of AFib for a pre-screen purpose. High 
sensitivity stands for low chance to omit the disease and high specificity 
indicates lesser possibility to erroneous diagnose of a normal person. 
Moreover, the false negative detection of AFib data was separated in 
five parameters from those of true positive data statistically in Figure 3. 
This implied that the false negative detection might due to the original 
data was in a normal state manner.

Discussion
Most previous studies emphasized the improvement of the 

whitening filter for QRS detection. This study proposed the improved 
R peak detection method using two different optimization algorithms 
to replace the knowledge-based theory in previous R peak detection 
method. This beat-to-beat Gaussian voting AFib method provides a 
new method for diseases classification and supports a high sensitivity 
and specificity for diseases detection. The voting mechanism can 
further apply to fuzzy neural network to construct a more precise and 
complete expert system. 

Conclusion
In conclusion, this working model is capable for early AFib 

detection, and represents a successful first step toward improving 
efficiency and quality of care in cardiovascular disease (CVD). Further 
research on improving both hardware and software designs are 
necessary to enhance the efficiency and accuracy of this system in the 
future.
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