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Introduction
The disease progression model introduced by Zelen and Feinleib 

[1] assumes that disease progresses through three states: where So
corresponds to the disease-free state, Sp the preclinical disease state
when an asymptomatic individual unknowingly has the disease that a
screening exam can detect, and Sc  the clinical state when the disease
manifests itself in clinical symptoms. In addition, if one enters the
preclinical state (Sp) at time t_1 and the clinical state (Sc) at time t2, the 
time difference (t2-t1) is called sojourn time. The length of the time (t2-t)
is called lead time if one is offered a screening exam at time t within the 
preclinical state (t1 ≤ t ≤ t2) and the disease is diagnosed.

Screening aims to detect disease in the preclinical state before 
symptoms appear, which may greatly increase the chances for effective 
treatment. The disease progression model has been used to analyze 
the screening data with three key components [2,3]: sensitivity of the 
screening modality, the sojourn time distribution, and the transition 
probability density from the disease-free to the preclinical state. These 
three parameters are building blocks for screening modeling, because 
all other parameters of interest can be expressed as a function of these 
key parameters. In particular, the sensitivity of the screening modality 
is critical for evaluating the predictive performance of a screening 
program. Note that the sensitivity is defined as the conditional 
probability that a screening test is positive when one is in the preclinical 
state (Sp). 

Screening sensitivity may depend on a variety of factors, such as 
position, location and size of the tumor, experience of the radiologist, 
age, etc. Wu et al. [2] modeled the sensitivity as a function of age with 
an age-dependent transition probability density and then applied the 
model to the Health Insurance Plan of Greater New Yorker (HIP), a 
breast cancer screening study, and later to the Mayo Lung Project data, 
a lung cancer screening study [3]. However, sensitivity of mammogram 
increases as a woman’s age increases, while screening sensitivity of chest 
X-ray for lung cancer does not depend on age. In later developments,
sensitivity was modeled as a function of the time spent in the preclinical 
state along with age at diagnosis [4], but sensitivity was influenced by
the proportion of time in the preclinical state to the sojourn time more 
than by age for breast cancer screening. For this reason, Kim and Wu
[5] recently modeled sensitivity as a function of the sojourn time and
time spent in the preclinical state and then applied the model to the
Johns Hopkins Lung Project data. Nevertheless, it still remains unclear 

which of these models describes sensitivity more appropriately.

Besides, the progress of disease can vary by age. In particular, it 
is well known that human cancer incidence depends on age, and the 
risk of being diagnosed with cancer increases with age [6]. Therefore, 
it is desirable to estimate the results of disease (e.g., cancer) screening 
for overall summaries as well as for age-specific summaries. To our 
knowledge, disease progression models have not considered variation 
in age. 

The main objectives of this study were to resolve the two 
aforementioned issues: (i) finding a proper sensitivity model and (ii) 
estimating the disease progression models by considering variation 
in age. To this end, we generalize sensitivity as a function of age at 
diagnosis, sojourn time, and time spent in the preclinical state and a 
nonlinear mixed-effects model is developed for disease progression 
models from a Bayesian framework. We then applied our models to 
the Johns Hopkins Lung Project (JHLP) data and the Health Insurance 
Plan for Greater New York (HIP) data. All simulations were run by 
using the statistical software R (R Development Core Team), and the 
algorithms described in this study can be obtained upon request from 
the authors.

The remainder of the paper is organized as follows. In Section 2, we 
introduce a disease progression model and our generalized sensitivity 
model. A Bayesian nonlinear mixed-effects model is developed based 
on a trinomial distribution in Section 3. In Section 4, the developed 
models are applied to JHLP and HIP data. Concluding remarks are 
found in Section 5.

A Disease Progression Model 
Suppose an individual begins the screening exams at the 
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Abstract
A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age 

in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, 
time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung 
Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and 
are compared with the estimation method that does not consider random-effects from age. Using the developed models, 
we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn 
time and transition probability. 
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where κ and  are positive scale and location parameters in the log-
logistic family. For more detailed descriptions of the log-logistic 
distribution, refer to Kim and Wu [5].

The disease progression model with the proposed sensitivity model 
has the parameter θ = (α,β,γ,,σ2,κ,ρ). For the cohort aged ti,0 at study 
entry, the conditional likelihood function is 
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where Ni is the number of screenings. As a result, the overall likelihood 
function for all the study groups is the product of the age-specific 
contributions across all age groups 
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=
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The conventional parameter estimation ignores the age-specific 
effect since its likelihood function is based on Equation (3). One 
approach to incorporating the age-specific effect into a model is to use 
a mixed-effects model. In the next section, a nonlinear mixed-effects 
model is developed with the age-specific effect as a random-effect.

A Bayesian Nonlinear Mixed-Effects Model
The three-stage hierarchical nonlinear mixed-effects model is 

developed for disease progression models from a Bayesian framework. 
The first-stage model has the form of

( ) ( )ij ij i ij ij ij i is , r | ~ Tri n ,D , I | ,1 i K;1 j N ,θ θ  ≤ ≤ ≤ ≤ 
where Di,j is the probability of an individual correctly diagnosed at the 
jth scheduled exam given at the ith age group;  Ii,j is the probability of 
an interval case in (ti,j-1,ti,j) at the ith age group; nij is the total number 
of the individuals examined at ti,j-1 at the ith age group; Sij: the number 
of cases diagnosed at ti,j-1at the ith group; rij: the number of interval 
cases within the interval (ti,j-1,ti,j) at the ith age group; and θi is a 
p-dimensional age-specific parameter vector, where, in this project, 
p=7 and ( ) ( ) ( ) ( )( )2

i i i i i i i ilog , , log , , log( ), log , logθ α b m σ κγ ρ= . Note that 
Tri stands for a trinomial distribution. The second-stage is structured 
based on a multivariate normal distribution (MVN) and is given by

( )i p p[ | , ] ~ MVN ,θ θ θΣ Σ

where θ is the population-average parameter vector, and ∑p is the 
between-age covariance matrix. The third stage of the model describes 
the prior distributions
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, 

for given c, Cp , , and Rp, where W is a Wishart distribution. The 
posterior distribution for (θ1,… θk , θ, ∑p) is proportional to
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The previous published results in Kim and Wu and Wu et 

th age group,  1  ≤ i ≤ K where K is the size of age groups, and let
i ii,0 i,1 i,N 1 i,N it t t t D−< < < < =  represent Ni ordered screening exams 

starting at age, ti,0where Di is the fixed follow-up time after the last 
examination. The jth screening interval is (ti,j-1,ti,j), j = 1,2,…Ni at the 
ith age group. The following notation is used: the jth annual screening 
exam occurs at age ti,j-1 = ti,0 + j-1, for j = 1,2,…Ni, and  ti,-1 = 0; nij is the 
total number of individuals examined at ti,j-1;sij is the number of cases 
diagnosed and confirmed at ti,j-1; and rij is the number of interval cases 
within the interval (ti,j-1,ti,j).

For each age group, we model sensitivity to vary with three factors, 
which are screening age t, sojourn time T, and time spent in the 
preclinical state s, by 

( ) ( )( )
1 st,s|T ,  0,
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,

1 e t

γ η = α γ ≥ + −α −b ⋅ −  
                                 (1)

Where t is the average age at entry in the entire study group and 
s ∈ [0,T] is the time spent in Sp. This is an extension of the sensitivity 
of Kim and Wu [5] where the sensitivity depends on the sojourn time 
and the time spent in the preclinical state. Note that sojourn time T 
is a random variable in this model. Here, in general, the parameters 
α  and γ are responsible for the maximum value and for the rate of 
the sensitivity, respectively, while the parameter β explains how the 
behavior of the sensitivity changes with age. Namely, the maximum 
sensitivity increases as the parameter α increases. When s/Tis close to 
zero, sensitivity increases rapidly if γ < 1, while sensitivity increases 
gradually if  > 1. Sensitivity is an increasing function of age when the 
parameter β is positive.

Let Dij be the probability of an individual correctly diagnosed at the 
jth scheduled exam, given at ti,j-1 and started the screening exam at age 
ti,0 (i.e. the ith age group), and Iij the probability of an interval case in 
(ti,j-1,ti,j). These two probabilities, for j = 1,2,…Ni, are:

( ) ( )
i,l

i,l 1 i, j 1

tj 2 j 2

ij i,m i,m i, j 1 i, j 1
l 0 m lt t x

D w x q t {1 (t , t x | t)} (t , t x | t)dtdx
∞

η η

− −

− −

− −
= =−

 
 = − − − 
  

∑ ∏∫ ∫

( ) ( ) ( )
i, j 1

i, j 2 i, j 1

t

i, j 1 i, j 1

t t x

w x q t t , t x|t dtdx,
∞

η
−

− −

− −

−

+ −∫ ∫

( ) ( ) ( ) ( )
i, j i, ji,l

i,l 1 i, j 1 i, j 1

t x ttj 1 j 1

ij i,m i,m i, j
l 0 m lt t x t

I w x q t {1 (t , t x | t)} dtdx w x 1 Q t x dx,η

− − −

−− −

= =−

 
   = − − + − −  
  

∑ ∏∫ ∫ ∫

and 

( ) ( ) ( )
i,0

i,0

t

i1 i,0 i,0

0 t x

D w x q t t , t x|t dtdx.
∞

η

−

= −∫ ∫
Note that W(x) is the probability density function for transition 

from So to Sp at age X and is modeled as a sub-density of a log-normal 
distribution,

( )
2

2
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where 20% was selected based on the previous analysis on Lung 
cancer screening [3]; q(t) is the probability density function (pdf) of 

the sojourn time in Sp; and ( ) ( )
z

Q z q t dt
∞

= ∫   is the survivor function of 

the sojourn time. The log-logistic distribution was used to model the 
sojourn time [2]: 
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al. were used for selecting of the hyper-parameters (i.e., prior 
information) of the JHLP and HIP data, respectively.  That is, we 
used the following estimates of mean and standard deviations for 
the hyper-parameters (α,β,γ,μ,σ^2,κ,ρ), respectively, (1.676 ± 1.338, 
0.085±0.078,0.1293 ± 0.0806,4.3440 ± 0.0008,0.0426 ± 0.0036, 1.6278 
± 0.8242,0.0263 ± 0.0150), for the JHLP data, and (1.676 ± 1.338,0.085 
± 0.078,0.1293±0.0806,4.340 ± 0.076,0.190 ± 0.076,2.509 ± 0.927, 
0.886±0.287), for the HIP data. The Gibbs sampler is defined by 
the following full conditional distributions except for age-specific 
parameterθ1:

( ) ( )
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1 K p i p
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( )( )1 1
p p p p~ MVN V K C c ,V ;   − −⋅ ⋅∑ ⋅θ + ⋅                (4)

( ) ( )
K

1
p 1 K i p p

i 1

| , , , Prob | , Prior−

=

 ∑ θ … θ θ ∝ θ θ ∑ × ∑   ∏

( )( )
1K

'
i i p

i 1

W K , R ,    

−

=

    ∼ + ω θ − θ θ − θ + ω⋅       
∑                 (5)

where  
K

1 1 1
i p p p

i 1

1 and V K C
K

 .− − −

=

θ = θ = ⋅Σ +∑
Because of the nonlinear functions Dij and Iij, the conditional 

distribution of θ1 is non-standard and known up to a normalizing 
constant,
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where Li(θ1) denote the conditional log-likelihood for the ith age of 
Equation (2).

Applications
The developed methods are applied to both the Johns Hopkins 

Lung Project (JHLP) data [5,7] and the Health Insurance Plan for 
Greater New York (HIP) data [8]. Since no analytical formulas were 
available for the likelihood function, we used the Markov chain Monte 
Carlo (MCMC) approach to estimate the posterior distribution for each 
parameter. In details, let the full conditional posterior distribution of a 
vector of parameters, θ, be [ | ]θ ⋅ , that is, the posterior distribution of  
θ given all other quantities in the model. Since our model is nonlinear, 
it leads to a form for [ | ]θ ⋅  that is non-standard and is known only up 
to a normalizing constant. For this reason, we updated the parameters 
via Metropolis-Hastings-within-Gibbs steps and chose random-walk 
Metropolis for updating the θ1 parameters, which is a natural choice of 
Metropolis-Hastings [9]. For setting of the prior distribution (hyper-
parameters), we employed the previous results in Kim and Wu [5] and 
Wu et al. [2] as stated before. 

For comparison, we analyzed the JHLP and HIP data using both 
the conventional and developed approaches. Here the conventional 

approach means that all the parameters were estimated based on 
the overall likelihood, which is Equation (3), without considering 
the variation in different age groups. For convenience, we call the 
developed algorithm the mixed-effects disease model (ME-DM) and 
the conventional algorithm the fixed-effects disease model (FE-DM). 

For both ME-DM and FE-DM, we generated one MCMC chain 
for each of JHLP and HIP data until the MCMC chain reached at 
least 20,000 iterations. We then obtained the MCMC chain with the 
size of 1,000 using the last 10,000 iterations for each chain with burn-
in of at least 10,000 and a thinning of every 10 steps. Supplementary 
Information (Figures S1 and S2 in Appendix) are the trace plots of the 
simulated

Markov chains only for population-level parameters. The solid 
and dotted horizontal lines represent the mean and the median of each 
parameter, respectively.  

The jhlp and hip data

In the Baltimore metropolitan area from 1973 to 1978, the Johns 
Hopkins Lung Project (JHLP) trials enrolled 10,386 men aged 45 
years and older who smoked at least one pack of cigarettes per day (or 
who had smoked this much within one year of enrollment) and who 
had no prior history of respiratory cancer. All participants were then 
randomized to either chest X-ray only or a dual screen (chest X-ray and 
sputum cytology) groups, resulting 5,160 men in the chest X-ray only 
arm and 5,226 in the dual-screen arm. Participants in the chest X-ray 
arm received chest X-ray screening test annually, for 8 consecutive 
years. If any of the tests were positive, the screen was considered 
positive and a definitive work-up exam, such as biopsy, was done. In 
this study, we used the chest X-ray arm, including the total number 
of participants in each screening exam, the number of detected and 
confirmed cancer cases in each screening exam, and the number of 
interval cases. These data were stratified by age at study entry from 45 
to 88 years old. 

The Health Insurance Plan of Greater New York (HIP) study began 
at the end of 1963 and was the first randomized clinical trial for regular 
screening exams that include mammography as a screening test for 
breast cancer [8]. The study enrolled asymptomatic women aged 40 
to 64 years who had no history of breast cancer. The participants were 
randomized into study and control arms, with about 31,000 women in 
each arm. The screening program for the study arm specified up to four 
annual breast exams with both a mammogram and a clinical breast 
exam, while the control arm received usual care. Data from the study 
arm was used for this study, where the data were stratified by age at 
study entry from 40 to 64 years old. 

Results
Table 1 displays the empirical means, standard deviations, and 95% 

credible intervals (CIs) of the posterior distributions of parameters. As 
for ME-DM, the fixed-effect estimates (i.e., population-level estimates) 
are considered to compare with the estimates of FE-DM. We can see the 
large absolute difference in log (α) and log (γ) between two estimation 
methods. However, all 95% CIs of estimates of FE-DM overlap with 
these of population-level estimates of ME-DM except for the estimate  

 of JHLP and HIP and the estimate   ñ̂  of HIP (Table 1).

Estimates of the variance-covariance matrix ∑ of ME-DM are 
shown in Table 2. Since only log (α), β, log (γ), and m are considered 
as random-effects, the size of ∑ is four by four. For both JHLP and HIP 
data, there is greater variation in the parameters log (α) and log (γ) 
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than these in other parameters, indicating that sensitivity is influenced 
by age at diagnosis. Forest plots of each individual-level estimate of 
ME-DM are plotted in Figure 1. In case of the parameters β and µ, 
the empirical means of the individual-level estimates  are very close 
to that of the population-level estimate for both JHLP and HIP data. 
On the other hand, we can see a larger variation of the individual-level 
estimates of log (α) and log (γ). These imply that the parameters α and 
β have a large influence on age, so does sensitivity. The individual-
level estimates of each age at diagnosis can be found in Supplementary 
Information (Tables S1 and S2 In appendix).

The developed sensitivity models depend on age at diagnosis, the 
time spent in the preclinical state and the sojourn time, resulting in 
a function of age and the proportion of  time spent in the preclinical 
state to the sojourn time. Note that the average age  in Equation (1) is 
globally set to 55 years for all age groups in both JHLP and HIP data. 

Figure 2 shows the posterior sensitivities estimated by FE-DM and 
ME-DM on JHLP and HIP data. The population-level estimates ã̂  of 
FE-DM are less than one (i.e., ( )log ˆ 0γ < ), while these of ME-DM are 
greater than one (i.e., ( )log ˆ 0γ > ), for both JHLP and HIP data (Table 
1). As a result, the population-level posterior sensitivities estimated 
by FE-DM are larger than these by ME-DM when s/T is near zero, 
based on the subplots between η and s/T in Figure 2. Interestingly, 
many individual-level posterior estimates of γ are less than one (i.e., 

( )log ˆ 0γ < ), although the population-level estimates are larger than 
one (i.e., ( )log ˆ 0γ > ), as can be seen in Figure 1 and Supplementary 
Information Tables 1 and 2. On the other hand, the population-level 

sensitivities of JHLP are an increasing function in age regardless of 
estimation methods, while these of HIP are a decreasing function in 
age in ME-DM , based on the subplots between age and s/T in Figure 2. 
This is because the posterior estimates   of JHLP and HIP are positive 
and negative, respectively. In general, both JHLP and HIP data show 
large differences in sensitivity between FE-DM and ME-DM. 

The individual-level posterior sensitivities are shown in 
Supplementary Information (Figures S3 and S4 in appendix). In 
particular, these predicted sensitivities show significant variations 
among age groups, which might be resulted from the large variations 
in parameters log (α) and log (γ) in Table 2. 

Figure 3 shows the posterior transition probability estimated by 
FE-DM and ME-DM. The estimates  2σ  of ME-DM for both JHLP 
and HIP are larger than these of FE-DM, resulting that the modes of 
FE-DM are a little smaller than these of ME-DM (61 vs. 72 years and 
51 vs. 73 years, respectively, for JHLP and HIP). The individual-level 
variation of the transition probability can be seen in Supplementary 
Information (Figure S5 in appendix). The variation in age is larger in 
JHLP data than in HIP data.

The posterior sojourn time distributions are depicted in Figure 4. 
As expected by that the 95% CIs of the estimates    of HIP are not 
overlapped, the sojourn time distributions of HIP are very different 
between FE-DM and ME-DM of HIP. The modes of sojourn time in 
HIP are 1.01 and 15.15 years for FE-DM and ME-DM, respectively, 
while these of JHLP are 21.21 and 38.38 years for FE-DM and ME-DM, 
respectively (Figure 4). 

Concluding Remarks
We propose a generalized sensitivity model which depends on age 

at diagnosis, time spent in the preclinical state and sojourn time, and 
the developed sensitivity model is applied to a novel nonlinear mixed-
effects model for a disease progression model in a Bayesian framework. 

As for JHLP data, FE-DM along with the developed sensitivity 
model estimates the parameters using the same data as used in Kim 
and Wu [5]. The main difference is the sensitivity model, and their 
sensitivity model is a special case of our model. That is, when the 
parameter b is equal to zero in Equation (1), our model becomes same 
as their model. Generally, our results are consistent with these of Kim 
and Wu [5]. However, our estimate of γ is smaller than their estimate, 
0.01 vs. 0.13, respectively (Table 3 in Appendix), resulting that our 
sensitivity increases much faster than theirs. This might be due to age-
effect in the sensitivity.

When the population-level sensitivity of JHLP data is compared 
with that of HIP data, we can see a different trend from each other in 
the sense that the sensitivity increases as men get older in lung cancer, 
while the sensitivity decreases as women get older. In other words, the 
probability to detect lung cancer is higher in old than in young, and 

log(α) β Log (γ) µ log(σ2) k log(ρ)
JHLP FE-DM -1.10 ± 2.21

(-6.50,1.51)
0.04 ± 0.09
(-.15,0.19)

-4.55 ± 5.48
(-17.30,1.04)

4.17 ± 0.32
(3.52,4.50)

-2.71 ± 0.78
(-3.74,-0.62)

2.19 ± 0.89
(1.04,4.33)

-3.49 ± 1.39
(-5.80,-1.51)

ME-DM 0.17 ± 0.14
(-0.12,0.44)

0.02 ± 0.06
(-0.10,0.14)

0.54 ± 0.09
(0.37,0.71)

5.10 ± 0.16
(4.70,5.33)

-0.19 ± 0.22
(-0.78,-0.00)

3.84 ± 0.84
(1.99,4.94)

-3.80 ± 0.30
(-4.37,-3.14)

HIP FE-DM -0.92 ± 1.06
(-3.28,0.81)

0.00 ± 0.12
(-0.19,0.18)

-1.58 ± 1.32
(-4.48,0.59)

4.22 ± 0.38
(3.52,4.65)

-1.25 ± 0.73
(-2.28,-0.06)

1.74 ± 0.69
(1.02,3.56)

-0.94 ± 0.34
(-1.62,-0.30)

ME-DM 0.18 ± 0.07
(0.03,0.32)

-0.03 ± 0.05
(-0.12,0.06)

0.53 ± 0.12
(0.29,0.77)

5.21 ± 0.07
(5.04,5.33)

-0.08 ± 0.08
(-0.26,-0.00)

4.03 ± 0.73
(2.21,4.96)

-2.82 ± 0.20
(-3.17,-2.39)

Table 1: Estimates of fixed-effects and mixed-effects using JHLP and HIP data. The empirical means, standard deviation, and 95% credible intervals of posterior distributions 
are reported.

JHLP
log(α) β log(γ) µ

log(α) 204.28 ± 83.92 
(91.46,404.52)

-0.04 ± 0.56 
(-1.21,1.05)

90.80 ± 47.89 
(21.52,206.16)

0.11 ± 0.90 
(-1.65,1.98)

β 0.01 ± 0.00 
(0.00,0.02)

-0.01 ± 0.38 
(-0.82,0.73)

0.00 ± 0.01 
(-0.01,0.01)

log(γ) 113.40 ± 42.72 
(55.80,217.48)

0.04 ± 0.56 
(-1.05,1.18)

µ 0.03 ± 0.02 
(0.01,0.07)

HIP
log(α) β log() µ

log(α) 302.53 ± 120.48 
(139.40,572.52)

-0.24 ± 0.62 
(-1.51,1.13)

284.07 ± 106.85 
(134.47,528.61)

-0.01 ± 0.61 
(-1.17,1.25)

β 0.01 ± 0.00 
(0.00,0.02)

-0.34 ± 0.83 
(-1.89,1.48)

-0.00 ± 0.00 
(-0.01,0.01)

log(γ) 407.42 ± 123.58 
(229.03,709.96)

0.01 ± 0.75 
(-1.48,1.63)

µ 0.01 ± 0.01 
(0.01,0.03)

Table 2: Estimates of variance-covariance matrices of ME-DM using JHLP and 
HIP data. The empirical means, standard deviation, and 95% credible intervals of 
posterior distributions are reported.
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(a) 

 

(b) 

 

Figure 1: The forest plots of individual-level estimates of ME-DM. (a) JHLP and (b) HIP. The red dotted lines indicate the means of the posterior population-level estimates of 
log (α), β, log (γ), and m. The solid dots and the solid lines represent empirical means and 95% credible intervals of the posterior distributions of each estimate.
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Figure 2: The sensitivity of JHLP and HIP.

(a)    (b) 

Figure 3: The transition probability of JHLP and HIP. (a) JHLP and (b) HIP.

(a)    (b) 

Figure 4: The sojourn time of JHLP and HIP. (a) JHLP and (b) HIP.

the breast cancer might be detected more in young than in old by a 
screening exam. This can be explained by the fact that lung cancer does 
not have a reliable early detection test compared with other cancers 
[10].

The main advantage of ME-DM over FE-DM is to incorporate 
variation in age into the disease progression model, resulting in 
estimates with better precision. By doing so, we can obtain not only 
population-level estimates but also individual-level estimates. Accurate 
estimates are critical for policy makers to predict the performance of 
a screening exam. In this regard, the proposed ME-DM along with a 
generalized sensitivity model might provide a more accurate assessment 
of screening for policy makers [11].
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