
Open AccessISSN: 2229-8711

Global Journal of 
Technology & Optimization

Research Article
Volume 11:1, 2020

DOI: 10.37421/gjto.2020.11.239

Influence of Principal Component Analysis as a 
Data Conditioning Approach for Training Multilayer 
Feedforward Neural Networks with Exact Form of 
Levenberg-Marquardt Algorithm

Abstract
Artificial Neural Networks (ANNs) have generally been observed to learn with a relatively higher rate of convergence resulting in 
an improved training performance if the input variables are preprocessed before being used to train the network. The  foremost 
objectives  of  data  preprocessing  include  size  reduction  of  the  input  space,  smoother  relationship,  data  normalization,  noise  reduction,  and  feature  extraction. The most 
commonly used technique for input space reduction is Principal Component Analysis (PCA) while two of the most commonly used data normalization approaches include the 
min-max normalization or rescaling, and the z-score normalization also known as standardization. However, the selection of the most appropriate preprocessing method for 
a given dataset is not a trivial task especially if the dataset contains an unusually large number of training patterns. This study presents a first attempt of combining PCA with 
each of the two aforementioned normalization approaches for analyzing the network performance based on the Levenberg-Marquardt (LM) training algorithm utilizing exact 
formulations of both the gradient vector and the Hessian matrix. The network weights have been initialized using a linear least squares method. The training procedure has been 
conducted for each of the proposed modifications of the LM algorithm for four different types of datasets and the training performance in terms of the average convergence rate 
and a proposed performance metric has been compared with the Neural Network Toolbox in MATLAB® (R2017a).

Keywords: Neural • Preprocessing • Min-max • Z-score

Najam Ul Qadir1*, Md. Rafiul Hassan2 and Khalid Akhtar1

1School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
2College of Computer Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

*Address for Correspondence: Qadir NU, School of Mechanical and 
Manufacturing Engineering, National University of Sciences and Technology, 
Islamabad, Pakistan, E-mail: najmul.qadir@smme.nust.edu.pk

Copyright: © 2020 Qadir NU, et al . This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Received 26 June, 2020; Accepted 01 July, 2020; Published 13 July, 2020

Introduction

Real-world data in its original raw format is mostly found to be incomplete 
and inconsistent, lacking in certain desired behaviors or trends, and usually 
presents various particularities such as data range, sampling, and category. 
Data preprocessing is a data mining technique that involves transforming raw 
input data into an easily interpretable format and mostly includes data cleaning, 
instance selection, transformation, normalization, and feature extraction for use 
in database-driven applications such as customer relationship management 
and rule-based applications like Artificial Neural Networks (ANNs). ANN 
training, in particular, can be made more efficient if certain preprocessing steps 
are performed on the network inputs and the targets. Prior to the onset of the 
training procedure, it is often mathematically useful to scale the inputs and the 
targets within a specified range so as to render them algorithmically convenient 
to be processed by the network during the training procedure.

The three most commonly reported data preprocessing approaches in literature 
for usage in machine learning applications include the min-max normalization 
or rescaling, the z-score normalization or standardization, and the decimal 
scaling normalization; however, others such as the median normalization, 
mode normalization, sigmoid normalization, and tanh estimators have also 
been reported based on the type of ANN architecture, scope of the targeted 
application, and the degree of nonlinearity of the dataset selected for training 
the network [1-10]. The main objective of min-max normalization is to transform 
the original data from its current value range to a new range predetermined 

by the user. The most commonly employed intervals used for rescaling are 
(0,1) and (-1,1). Z-score normalization on the other hand transforms input data 
by converting the current distribution of the original raw data to a standard 
normal distribution with a mean of 0 and a variance equal to 1. Finally, the 
objective of decimal normalization is to transform the input data by moving the 
decimal points of values of a particular feature incorporated within the data, 
where the number of decimal points moved is dependent upon the maximum 
absolute value of the feature. A wide variety of previously reported research 
studies based on machine learning have exploited the aforementioned data 
preprocessing techniques in a number of different ways so as to render the 
input training data algorithmically most convenient for the ANN architecture 
being utilized for the training procedure. For instance, Nawi et al. [11] 
employed each of the aforementioned types of data preprocessing techniques 
in order to improve the network training efficiency as well as accuracy of four 
types of ANN models namely, Traditional Gradient Descent with Momentum, 
Gradient Descent with Line search, Gradient Descent with Gain, and Gradient 
Descent with Gain and Line search. The training results revealed that the 
use of data pre-processing techniques increased the accuracy of the ANN 
classifier by at least more than 95%. More recently, Nayak et al. [12] applied 
seven different normalization approaches on a time-series data for training 
two simple and two neuro-genetic hybrid network architectures for the purpose 
of stock market forecasting. The training process conducted on each of the 
selected normalization approaches resulted in a relative error of 2% for each 
of the sigmoid normalization and the tanh estimator techniques followed by 
the median normalization approach with a relative error of 4%. Similarly, 
Jin et al. [13] utilized the min-max as well as the normal distribution-based 
normalization instead of the well-known standard normal distribution-based or 
the z-score normalization in order to forecast Tropical Cyclone Tracks (TCTs) 
in the South China Sea with the help of a Pure Linear Neural Network (PLNN). 
Four types of datasets were collected in real-time and then mapped near to 
as well as far away from 0 using the two selected normalization methods. It 
was demonstrated that both types of normalization techniques produce similar 
results upon training the network on four normalized datasets as long as they 
map the data to similar value ranges. It was further observed that mapping the 
data near to 0 results in the highest rate of convergence given that sufficient 



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 2 of 13

number of training epochs are available to train the network. More recently, 
Kuźniar et al. [14] investigated the influence of two types of data preprocessing 
techniques on the accuracy of the ANN prediction of the natural frequencies 
of horizontal vibrations of load-bearing walls-data compression with the 
application of the principal component analysis and data scaling. It was noticed 
that the preprocessing accomplished by scaling of the input vectors with the full 
information of data without the compression produces the improvement in the 
Mean Squared Error (MSE) up to 91%. In a similar manner, Asteris et al. [15] 
predicted the compressive strength and the modulus of elasticity of sandcrete 
materials using a Backpropagation Neural Network (BPNN) with two hidden 
layers and both the min-max as well as the z-score normalization approaches 
for preprocessing the raw input data. Based upon the comparison of the 
network-predicted mechanical properties with the experimentally obtained 
values, it was concluded that the min-max normalization resulted in the 
highest values of the Pearson’s correlation coefficient amongst the previous 
top twenty data normalization approaches reported for the prediction of each 
of the aforementioned mechanical properties of sandcrete materials. In a 
similar fashion, Akdemir et al. [16] proposed a novel Line Based Normalization 
Method (LBNM) to evaluate Obstructive Sleep Apnea Syndrome (OSAS) 
based on real-time datasets obtained from patients clinically suspected of 
suffering from OSAS. Each clinical feature included in the OSAS dataset 
was first normalized using conventional approaches including the min-max 
normalization, decimal scaling, and the Z-score normalization as well as by 
LBNM in the range of [0,1], and then classified using the LM backpropagation 
algorithm as well as others including the C4.5 decision tree. As compared to 
a maximum classification accuracy of 95.89% evaluated using 10-fold cross-
validation for the combination of the conventional normalization approaches 
with C4.5 decision tree, a classification accuracy of 100% was evaluated 
for the combination of LBNM with C4.5 decision tree for the same validation 
condition. More recently, Cao et al. [17] proposed a novel Generalized Logistic 
(GL) algorithm and compared it with the conventional min-max and z-score 
normalization approaches to scale a biomedical data to an appropriate interval 
for diagnostic and classification modeling in clinical applications. The study 
concluded that the ANN models trained on the datasets scaled using the 
GL algorithm not only proved much more robust towards outliers in dataset 
classification than the other two conventional approaches, but also yielded the 
greatest average Area Under the Receiver Operation Characteristic Curves 
(AUROCs) as well as the highest average accuracies than the other two 
normalization strategies. 

All of the aforementioned studies have utilized a variety of preprocessing 
techniques in order to achieve the most optimum network performance 
whereby the structure of the training data itself has been observed to be the 
most decisive factor in the selection of the most appropriate method. However, 
none of the training algorithms proposed by each of these studies involve exact 
formulations of either the gradient vector or the Hessian matrix for the purpose 
of weights update in the training algorithm. This study proposes a first attempt 
of analyzing the effects of data preprocessing on the training performance of a 
feedforward neural network with a single hidden layer using exact formulations 
of both the gradient and the Hessian derived via direct differentiation for 
weights update in the LM algorithm. The two most commonly reported data 
preprocessing approaches, namely the min-max and the z-sore normalization, 
have been used in conjunction with PCA for four different types of training 
datasets, namely the 2-spiral, the parity-7, the Hénon time-series, and the 
Lorenz time-series. The network training performance predicted in terms of 
the average convergence rate and a newly proposed performance metric with 
each of the four selected datasets as well as the two normalization approaches 
for the proposed LM algorithm has been compared with the corresponding 
performance evaluated using the Neural Network Toolbox (NNT) in MATLAB® 
(R2017a).

ANN Learning Methodology

Weights update using the LM algorithm

The training procedure of an ANN can also be viewed as a least-squares 
curve-fitting problem, since the objective function to be minimized is the Mean 

Squared Error (MSE) between the network-computed matrix at the current 
training iteration and the target matrix, expressed as [18]:

[ ]
2

mn
1 1

1( ) ( ) TptsN M
mn

m npts
MSE W P W

MN =
= −∑ ∑                        (1)                                                          

where W  collectively represents the weights assigned to the connections 
between the network layers, T represents the ( )ptsN M×  target matrix 
assigned to the output layer, P represents the ( )ptsN M×  network-computed 
matrix at each training iteration, M denotes the total number of patterns in the 
training dataset, and M represents the size of each pattern in each of P and T.

The weights update during the training process using the LM algorithm can be 
expressed as [18]:

1
opt

i i iiW W a s+ = +                                                                                                                       (2)

where thi  represents the vector containing all the weights and biases used for 
the network at the thi training iteration, while 

opt
iα  and iS  represent the optimal 

step-size and the search direction at the iS  iteration respectively. For the exact 
form of LM algorithm, iS  can be expressed as [18]:

1( )i i i iS H G−
+= µ δ                                                                                                                   (3)

where iH and thi  represent the exact Hessian matrix and exact gradient vector 
at the thi  training iteration, δ  is the identity tensor, and iµ  is the learning rate 
at the thi  iteration. For a general minimization scheme of a function ( )f X , the 
optimal step-size optα can be expressed as [18]:

[ ( ]opt Arg Min f X Sαα = + α                                                                                                   (4)

In the actual training procedure of a multilayer perceptron, the function thi  in 
equation (4) will represent the MSE at the thi  training iteration, while X will be 
replaced by iW . In equation (1), a typical entry of the network-computed matrix, 
at a given training iteration, for a feed-forward neural network with a single 
hidden layer can be expressed as [18]:

2 2, 1 1, mk 1, j 2,
1 1

( ) I b
HN N

mn nj jk n
j k

P W f W f W b+

= =

    = +   
    

∑ ∑                    (5)1f
where 1f  is the activation function applied on input to each neuron in the 
hidden layer, 2f is the activation function applied on input to each neuron in 
the output layer, I  represents the ( )ptsN N×  input matrix, I  being the size of 
each pattern in I , HN  is the number of neurons included in the hidden layer 
(hidden neurons), 1W  represents the ( )HN N×  matrix consisting of weights 
connecting the input layer to the hidden layer, 1b represents the ( )HN ×1 vector 
consisting of biases applied to each of the hidden neurons, ( )HM N×  represents the 
( )HM N×  matrix consisting of weights connecting the hidden layer to the output 
layer, and ( 1)M ×  represents the ( 1)M ×  vector consisting of biases applied to 
each of the neurons in the output layer. For this study, we have selected 1f  
and 2f  to be hyperbolic tangent and pure linear functions respectively, i.e., 

1( ) tanh( )f x x=  and 2 ( )f x x=

The exact gradient vector used to determine the search direction at a given 
training iteration in equation (3) can be expressed as [18]:

1 2 1 2

T MSE MSE MSE MSEG
W W b b

∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂ 
                                                                                       (6)

where G is a ( ) 1H H HMN N N M N+ + + ×    vector, and TG represents the 
transpose of  Following substitution of equation (5) in (1), each of the first 
derivatives included in equation (6) can be expressed in their respective 
indicial notations as [18]:

( )
2

2, mk mn 1, ml 1,
1 1 11,

2 I (P ) 1 tanh IptsN M N
nj mn jl j

m n ljk pts

MSE W T W b
W MN = = =

∂   = − − +   ∂  
∑ ∑ ∑

                    
                     (7)

( ) ( )1, mk 1, j
1 12, nj

2 tanh I bptsN N
mn mn jk

m kpts

MSE P T W
W MN = =

∂
= − +

∂ ∑ ∑          (8)

=



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 3 of 13

( ) ( )
2

2, 1, ml 1,
1 1 11,

2 1 tanh I bptsN M N
nj mn mn jl j

m n lj pts

MSE W P T W
b MN = = =

∂   = − − +   ∂  
∑ ∑ ∑  (9)

and

( )1 12, n

2 ptsN M
mn mn

m npts

MSE P T
b MN = =

∂
= −

∂ ∑ ∑                                           (10)

In equations (7-10), 1,..., , 1,..., ,  Hj N k N= =  and 1,...,n M= . 

The exact Hessian matrix used to determine the search direction at a given 
training iteration in equation (3) can be expressed as [18]:

2 2 2 2

1 1 1 2 1 1 1 2

2 2 2 2

2 1 2 2 2 1 2 2

2 2 2 2

1 1 1 2 1 1 1 2

2 2 2 2

2 1 2 2 2 1 2 2

MSE MSE MSE MSE
W W W W W b W b
MSE MSE MSE MSE

W W W W W b W bH
MSE MSE MSE MSE
b W b W b b b b
MSE MSE MSE MSE
b W b W b b b b

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂=  
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ 

                                           (11)                                                                                 

where H  is a square matrix with the total number of rows or columns equal to
( )H H HMN N N M N+ + + . Following substitution of equation (5) in (1), 
each of the second derivatives included in equation (11) can be expressed in 
their respective indicial notations as [18]:( ) ( )

( )( )
( )( )

2 2

2 22,

3

2, 2, mk mb 1 1 ,2 1 1

1 1
1, 1, 2, mk mb ,

1 1 2

I I
2

I I

pts

pts na

mn mn

N M
nj nj A B ifj a

m n

N M W A B
ab jk pts nj ifj a

m n P T A A

W W
MSE

W W MN W
−

− − ≠
= =

 − − 
≡ = = + −  


∂ 

= ∂ 


∑ ∑

∑ ∑     (12)

( )
( )

( )( )

2
2, mb

1
2

2
2, m

1, 2, mb
1 2

I A 1 ,
2

I 1
I ,

1

pts

pts

N
na

m

na bN
ab nj pts

m
mn mn

W B ifj a
MSE

W A B
W W MN ifj a

P T A

=

 
 
 
 

=  
 
  

 − ≠


∂ = −∂ =
+ − −



∑

∑
                                                (13)

( )
( ) ( )

2
2 2, mk

1

22, 1, mk 2,
1

I A 1 ,2

I 1 ,

pts

pts

N
na

m

N
nj ak pts na mn mn

m

W B ifj aMSE
W W MN W A P T B ifj a

=

 
 −

=   

 − ≠∂ = ∂ + − =

∑
∑

                                          (14)

2
1

2, 2,

,2

0,Otherwise

ptsN

m

nj ra pts

AB ifr nMSE
W W MN

=
 =∂ = ∂ 

∑
                                                        (15)

( ) ( )

( )( )
( )( )

2 22, 2, mb ,
1 1

2
2 22,

1, 1, 2, mb 31 1

I 1 1 a
2 1 1

I ,
2

pts

pts

N M
nj na

m n

naN M
ab j pts nj

m n mn mn

W W A B ifj
MSE W A B

W b MN W ifj a
P T A A

= =

 
 
 
 = =  
  

 − − ≠
∂ = − −∂ = + − −

∑ ∑

∑ ∑                       (16)

( )
2

22, mb
11, 2,

2 I 1ptsN
na

mab n pts

MSE W B
W b MN =

∂
= −

∂ ∑                                                                                 (17)

( )
( ) ( )

22 2,
1

22, na 1, j 2,
1

1 ,2

1 ,

pts

pts

N
nj

m

Npts nj mn mn
m

W B A ifj aMSE
W b MN W B P T A ifj a

=

=

 − ≠∂ = ∂ + − − =   

∑
∑

 (18)

2
1

2, na 2, r

,2

0,otherwise

ptsN

m

pts

B ifr nMSE
W b MN

=
 =∂ = ∂ 

∑                                                                                      (19)

( ) ( )

( ) ( )

( ) ( )

2 22, 2, mk
1 1

2
2 22,

1, 1, 2, mk
1 1 3

I 1 1 ,
2 1 1

I ,
2

pts

pts

N M
nj na

m n

naN M
a jk pts nj

m n
mn mn

W W A B ifj a
MSE W A B

b W MN W ifj a
P T A A

= =

 
 
 
 = =  
  

 − − ≠
∂  − −= ∂ =

+ − −

∑ ∑

∑ ∑
                     (20)

( )
( )

( )

( )

2
2,

1
2

2
2,

1, 2,
1 2

1 ,
2

1
,

1

ptsN
na

m

naNpts
a nj pts

m
mn mn

W A B if a
MSE

W A B
b W MN ifj a

P T A

=

=

 − ≠
∂   = −∂   =

 + − −

 

∑

∑
                     (21)

( )
2

22, nj mk
12, n 1, jk

2 I 1ptsN

mpts

MSE W A
b W MN =

∂
= −

∂ ∑                                                                                  (22)

     
2

1

2, n 2, rj

,2

0,otherwise

ptsN

m

pts

A ifr nMSE
b W MN

=
 =∂ = ∂ 

∑                                                         (23)                                                                                          

( ) ( )

( ) ( )
( )( )

2 22, 2,
1 1

2
2 2

2,
1, a 1, j 2,

1 1 3

1 1 ,
2

1 1
b ,

2

pts

pts

N M
nj na

m m

naN M
pts nj

m n
mn mn

W W A B ifj a
MSE W A B

b MN W ifj a
P T A A

= =

= =

 − − ≠
∂   = − −∂   =

 + − −  

∑ ∑

∑ ∑
                               (24)

( )
2

2
2,

11, a 2, n

2 1
b

ptsN
na

mpts

MSE W B
b MN =

∂
= −

∂ ∑                                                                                     (25)

( )
2

2
2,

12, n 1, j

2 1
b

ptsN
nj

mpts

MSE W A
b MN =

∂
= −

∂ ∑                                                                                       (26)

and
2

2, n 2, r

2
0,otherwiseb

ifr nMSE
b M

=∂
= ∂ 

                                                                                               (27)

In equations (12–27),  
1, 1, 1, ml 1, a1 1tanh( ), tanh( I b ),N N

jl j all lA W I b B W= == Σ + = Σ +

m 1,..., , , 1,..., , , 1,...,  and n, r 1,...,pts HN a j N b k N M= = = =
Weight initialization

In this work, a multilayer feedforward neural network with 3 fully interconnected 
layers (1 input layer, 1 hidden layer, and 1 output layer) is considered. 
For each of the input layer and the hidden layer, the last neuron is a bias 
node with a constant output equal to 1. Assuming that there are P patterns 
available for network training, all the given inputs to the input layer can be 
represented by a matrix 1N +  with P rows and N+1 columns with all entries 
of the last column equal to 1. Similarly, the target data can be represented 
by a matrix T  with P rows and M columns. The weights between the 
neurons in the input and the hidden layers form a matrix 1W  with entries 

1
, ( 1,..., , 1,..., 1),Hj jW i N j N= = + , where each 1

,j jW  connects thi neuron 
of the input layer with the thj  neuron of the hidden layer. Hence, the output of 
the hidden layer can be expressed as , 1 , '1( )H OUT I INA f W A=  where , 'I INA  
represents the transpose of the input matrix , 'I INA . In a similar fashion, the 
weights between the neurons in the hidden and the output layers form a 
matrix 2W with entries 2

, ( 1,..., , 1,..., 1),hi jW i M j N= = +  where each 2
,i jW  

connects thj  neuron of the hidden layer with the 
thj neuron of the output 

layer. This implies that the inputs to the output layer can be represented by 
a matrix o,INA  with 1HN +  rows and P columns. The optimal initial weights 
for the proposed feedforward neural network with a single hidden layer can be 
evaluated by solving the following minimization problem [19]:

Minimize ( )' 2'0,2
2

IN Wf A S−                   (28)

where 2'W  denotes the transpose of 2W  and a typical entry of the matrix S 
can be expressed as:

1
, , )(i j i jS f t−=                                    (29)

where ,i jt  denotes a typical entry of T. The matrix 1W  is first initialized 
randomly following which the Linear Least Squares (LLS) problem expressed 
in (28) can be solved for 2

OPTW  by QR factorization using either householder 
reflections or Singular Value Decomposition (SVD). However, since SVD is 
characterized by a relatively higther numerical stability, it has thus been utilized 
in the current study to solve the aforementioned minimization problem. In 
the case of an underdetermined system, SVD computes the minimal norm 
solution, whereas in the case of an overdetermined system, SVD produces 
a solution that is the best approximation in the least squares sense [19]. 
The solution 2

OPTW  to the aforementioned LLS problem contains the optimal 
weights connecting the hidden layer to the output layer. 

( ) ( )

( )( )
( )( )

2 2

2 22,

3

2, 2, mk mb 1 1 ,2 1 1

1 1
1, 1, 2, mk mb ,

1 1 2

I I
2

I I

pts

pts na

mn mn

N M
nj nj A B

m n

N M W A B
ab jk pts nj

m n P T A A

W W
MSE

W W MN W
−

− −
= =

 − − 
 = = + −  

∂ 
= ∂ 



∑ ∑

∑ ∑

if   j = a

                (12)

( )
( )

( )( )

2
2, mb

1
2

2
2, m

1, 2, mb
1 2

I A 1 ,
2

I 1
I ,

1

pts

pts

N
na

m

na bN
ab nj pts

m
mn mn

W B
MSE

W A B
W W MN

P T A

=

 
 
 
 

=  
 
  

 −


∂ = −∂ 
+ − −



∑

∑
                                                (13)

( )
( ) (  )

2
2 2, mk

1

  22, 1, mk 2,
1

I A 1 ,2

I 1  ,

pts

pts

N
na

m

N
nj ak pts na mn mn

m

W BMSE
W W MN W A P T

=

 
 −

=   

 −∂ = ∂ +

∑
∑

                                          (14)

2
1

2, 2,

,2

0,Otherwise

ptsN

m

nj ra pts

AB  if r   nMSE
W W MN

=
 =∂ = ∂ 

∑
                                                        (15)

( ) (  )

( )( )
( )( )

 2  22, 2, mb ,
1 1

2
2 22,

1, 1, 2, mb 31 1

I 1
2 1 1

I ,
2

pts

pts

N M
nj na

m n

naN M
ab j pts nj

m n mn mn

W W
MSE W A B

W b MN W
P T A A

=

 
 
 
 =  
  

 −
∂ = − −∂  + − −

∑ ∑

∑ ∑                       (16)

( )
2

22, mb
11, 2,

2 I 1ptsN
na

mab n pts

MSE W B
W b MN =

∂
= −

∂ ∑                                                                                 (17)

( )
( ) ( )

22 2,
1

22, na 1, j 2,
1

1 ,2

1 ,

pts

pts

N
nj

m

Npts nj mn mn
m

W B   AMSE
W b MN W B P   T

=

=

 −∂ = ∂ +   

∑
∑

 (18)

2
1

2, na 2, r

,2

0,otherwise

ptsN

m

pts

B if r  nMSE
W b MN

=
 =∂ = ∂ 

∑                                                                                      (19)

( ) ( )

( ) ( )

( ) ( )

2  22, 2, mk
1 1

2
2 22,

1, 1, 2, mk
1 1 3

I 1 1 ,
2 1 1

I ,
2

pts

pts

N M
nj na

m n

naN M
a jk pts nj

m n
mn mn

W W
MSE W A B

b W MN W
P T A A

=

 
 
 
 =  
  

 −
∂  − −= ∂ 

+ − −

∑ ∑

∑ ∑
                     (20)

( )
( )

2
2,

1
2

2
2,

1, 2,
1 2

1 ,
2

1
,

1

ptsN
na

m

naNpts
a nj pts

m
mn mn

W A  B
MSE

W A B
b W MN

P T A

=

=

 −
∂   = −∂  

 + − −

∑

∑
                     (21)

if   j = a

  if   j  a≠

if   j = a

  if   j  a≠

−

−

B if   j = a

=

=
1   if   j  a≠

if   j = a

  if   j  a≠

−− if   j = a

=

=
− if   j  a≠

if   j = a

if   j  a≠

if   j = a

A B

A B

 A

( )
2

22, nj mk
12, n 1, jk

2 I 1ptsN

mpts

MSE W A
b W MN =

∂
= −

∂ ∑                                                                                  (22)

     
2

1

2, n 2, rj

,2

0,otherwise

ptsN

m

pts

A if r  nMSE
b W MN

=
 =∂ = ∂ 

∑                                                         (23)                                                                                          

( ) ( )

( ) ( )
( ) ( )

 2 22, 2,
1 1

2
2 2

2,
1, a 1, j 2,

1 1 3

1 1 ,
2

1 1
b ,

2

pts

pts

N M
nj na

m m

naN M
pts nj

m n
mn mn

W W
MSE W A B

b MN W
P T A A

=

= =

 −
∂   = − −∂  

 + − −  

∑ ∑

∑ ∑
                               (24)

( )
2

2
2,

11, a 2, n

2 1
b

ptsN
na

mpts

MSE W B
b MN =

∂
= −

∂ ∑                                                                                     (25)

( )
2

2
2,

12, n 1, j

2 1
b

ptsN
nj

mpts

MSE W A
b MN =

∂
= −

∂ ∑                                                                                       (26)

and
2

2, n 2, r

2
0,otherwiseb

if r  nMSE
b M

=∂
= ∂ 

 (27)

In equations (12–27), 

m 1,..., , , 1,..., , , 1,...,  and n, r 1,...,pts HN a j N b k N M= = = =

=
− BA   if   j  a≠

if   j = a

A = tanh(Ib), (Σ
N
l= 1W1, lj Iml + b1, j), B = tanh(Σ

N
l= 1

W1, la Iml + b1, a



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 4 of 13

Principal component analysis

PCA is a statistical technique which uses an orthogonal transformation to 
convert a set of observations consisting of possibly correlated feature variables 
into a corresponding set of values of linearly uncorrelated variables commonly 
referred to as principal components [20,21]. The transformation is accomplished 
such that the first principal component accounts for the magnitude of the 
largest possible variability while each succeeding component sequentially 
characterizes continuously decreasing levels of variability within the original 
dataset. In the context of machine learning applications, PCA attempts to 
capture the major directions of variations by performing the rotation of the raw 
training dataset from its original space to its principal space. The magnitudes 
of the resulting eigenvalues thus characterize the sequentially varying levels 
of variability in the original dataset, while the corresponding eigenvectors 
which form an uncorrelated orthogonal basis define the respective directions 
of variation assigned to each level of variability. However, it is worth mentioning 
here that PCA is fairly sensitive towards the pre-scaling or normalization of the 
input variables included in the original dataset.

In order to conduct the PCA for an input dataset I with rows , pts,i 1,..., NiI =  
and columns , 1,..., ,jI j N=  the following stepwise procedure is followed [21]:

A new dataset S is evaluated from the original dataset I using either the  
min-max or z-the score normalization approaches, the typical entry of which 
can be expressed as:

, , min
, (min max)

, max , min

i j j
i j

j j

I IS
I I

−
−

−

 =  
 

                                           (30)  

, , mean
, (Z score)

, std . dev

i j j
i j

j

I IS
I

−
−

 =  
 

                                           (31)

where , minjI  and , maxjI  represent the minimum and maximum values in jI  
respectively, while ,j meanI  and , std . devjI  represent the mean and the standard 
deviation of the values in jI  respectively. 

The covariance matrix is then computed from the normalized dataset as:

{ }pqC c N N= ×
                       (32)

where ,
1

1 , 1,...,t
pq p q

pts
C S S p q N

N −
= =                    (33)

The eigenvectors of the covariance matrix are then determined by solving the 
following eigenvalue problem:

,k k kCe e= λ                                       (34) 

such that 1, 1,...ke k N= =

where kλ  is the kth eigenvalue and N  represents its corresponding 
eigenvector. Each of the N eigenvectors determined by solving (34) are 
referred to as the principal components.

The eigenvalues kλ  are then sorted in descending order, and a matrix R  
is defined the columns of which are formed by the respective eigenvectors 
corresponding to the sorted eigenvalues. 

Compute the rotation matrix R :

1/2 TR E V−=                   (35)

where E is a diagonal matrix with diagonal entries representing the sorted 
eigenvalues.

The original input dataset is finally rotated using the rotation matrix to achieve 
a new input dataset with linearly uncorrelated patterns as: 

T T
PCAI RI=                    (36)

It is observed that all the weights used for the training procedure remain 
unchanged except 1W  which can be recovered as:

1 1
rotW W R=                                           (37)

where 1W  represents the 1W  matrix applicable to the rotated version of the 
original input dataset. 

Training datasets

2-spiral dataset: The governing equations used for generating the 2-spira
expressed as [18,22]:

where
𝑟𝑟 n=

0.4 105 − 𝑛𝑛
104

, for one  spiral

0.4 𝑛𝑛 105
104

, for the  other  spiral
 

(                )

(     −         )

( 1)
16

n
nπ −

α =

                  (38)

where 1 2[ ( ) ( )]sP x n x n=  represents a typical pattern of the input matrix P , 
1,2 , ptsS N= 

. The targeted output sT  equals 1 if the two inputs in a given 
pattern correspond to a point on one spiral, and -1  if they correspond to a point 
on the other spiral (or vice versa). Hence the total number of patterns, ,ptsN , 
contained in the dataset equals 2n . For this study, the value of n  is chosen to 
be equal to 100 which corresponds to 200.ptsN =  Figure 1 shows a graphical 
illustration of the 2-spiral dataset. 

 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0.2    0.4                0.6                0.8

X1

X 2

Ts = 1
Ts = -1

Figure 1. Graphical illustration of the 2-spiral dataset for n = 100.

Hénon time series: The Hénon map takes a point ( , )n nx y in the x-y plane 
and maps it to a new point [23]:

2
1 1n nnx ax y+ = − +

1n ny bx+ =                   (39)

The map depends on two parameters, a and b, which for the classical Hénon 
map have values of a = 1.4 and b = 0.3. For the classical values the Hénon map 
is chaotic. For other values of a and b the map may be chaotic, intermittent, or 
converge to a periodic orbit. Figure 2 shows the Hénon time series plot for the 
aforementioned values of a and b used in this study.

Lorenz time series: The Lorenz time series is expressed mathematically by 
the following system of three ordinary differential equations [24]:

dataset can be 



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 5 of 13

 

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-1          -0.5            0           0.5            1
X

y

Figure 2. Hénon attractor map for a = 1.4 and b = 0.3.

( )x y x= σ −

( ) yy x z= ρ − −  
z xy z= −β                  (40)

where the constants σ, ρ, and β are system parameters proportional to the 
Prandtl number, the Rayleigh number, and certain physical dimensions of the 
system respectively. For this research, the x-component of the time-series has 
been used as the training dataset where the values of σ, ρ, and β have been 
selected to be 10, 28, and 8/3 respectively for which the Lorenz time series plot 
is graphically illustrated in Figure 3.

Parity-N problems: The N -bit parity function is a mapping defined on 2N

distinct binary vectors that indicates whether the sum of the N  components of 
a binary vector is odd or even. Let 1 2[ , ,..., ]T

Nβ = β β β  be a vector in NB  

where { }: 0 or 1 for k 1,2,...,  N N
kB R N= β∈ β = = . The mapping 

1: BN Bψ →  is called the N -bit parity function if [18]:

 

40

30

20

10

20

0
0-20

-40
-10

10

X

y

N

Figure 3. Lorenz attractor map for σ = 10, ρ = 28 and β = 8/3.

1

1

1
0

N
kK

N
kK

if
if

=

=

 ∑ β
ϕ(β) = 

∑ β
                                 (41)

For this study, the parity-7 problem has been selected for the purpose of 
comparing the network performance observed using the proposed LM 
algorithm with that evaluated using the NNT (MATLAB® R2017a).

Training methodology: The training methodology proposed in this work using 
the LM algorithm with exact gradient and Hessian is demonstrated in Figure 4. 
The learning rate has been updated according to [18]:

i, i+1 i
1

i, i+1 i

0.1 if MSE SE
10 if MSE  MSE

i +
µ − µ < Μ

µ = µ − µ ≥
                                                                (42)

where iMSE  denotes the value of MSE at the thi  training iteration. For the 
purpose of investigating the effect of the initial value of learning rate on the 
training performance, two different initial values of 1 310  and 10init init

− −µ = µ =  
have been selected both of which have 

 
Figure 4. ANN training methodology proposed in this work.

been updated during the training process in accordance with equation (42). 
The training performance of each of the proposed LM algorithm as well as 
the NNT (MATLAB® R2017a) has been evaluated in terms of the Average 
Convergence Rate (A.C.R) and a newly proposed Performance Metric (P.M) 
each of which can be mathematically expressed as:

1 1
0

1. . 100i iNiter
i

iter i

MSE MSEAC R
N MSE

− +

=
− = ∑ × 

 
                (43)

0
min

. logiter iN
i

MSEP M
MSE=

  = ∑     
                 (44)

where 300iterN =  represents the selected total number of training iterations 
and minMSE  denotes the minimum value of MSE  achieved at the end 
of the training procedure by either of the proposed LM algorithm or the NNT 
(MATLAB® R2017a). 

Training Results

The training process using the proposed LM algorithm with direct differentiation-
based exact formulations of both the gradient and the Hessian was conducted 
on an Intel® i7-2600 workstation with a 3.2 GHz microprocessor and 8 GB 
RAM. The results obtained as a result of the training process for each of the 
four selected datasets are discussed below.

2-spiral dataset

Figure 5 presents a comparison of the training performance of the proposed LM 
algorithm using either the min-max or the z-score normalization approaches 
with the NNT (MATLAB® R2017a) for the 2-spiral dataset. Accordingly,  
Table 1 presents the percentage improvement evaluated for the proposed LM 
algorithm over the NNT in training the network with each of the two selected 
preprocessing approaches for this dataset. It can be seen that the best training 
performance improvement for the proposed LM algorithm over the NNT has 
been evaluated for the case of min-max normalization as the data conditioning 
approach resulting in an almost 435% higher value of P.M. for 2HN =  

.

.

.



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 6 of 13

and 110init
−µ = , while the worst has been observed for the case of z-score 

normalization for which an almost 99% lower value of A.C.R has been obtained 
for 2HN =  and 310init

−µ = . Averaging the data given in Table 1 over the four 
selected values of HN  and the two different values of initµ , the proposed LM 
algorithm results in an almost 81% lower value of A.C.R and a 106% higher 
value of P.M. than the NNT when min-max normalization is used as the data 
preprocessing technique, while a 91% lower value of A.C.R and a 3% higher 
value of P.M. for the case when z-score normalization is employed. Figure 6 
demonstrates the evolution of MSE during the course of network training for 
each of these two scenarios of performance improvement of the proposed LM 
algorithm over the NNT. 

Table 1. Training performance of the proposed LM algorithm for the two data 
preprocessing approaches in terms of percentage improvement over the NNT for 
the 2-spiral dataset.

μinit NH

Z-Score Min-Max

A.C.R (%) P.M. (%) A.C.R (%) P.M. (%)

10-1

2 -80.292 98.0884 -50.2852 435.4122
5 -90.2601 45.6079 -81.7397 254.748
10 -97.5178 -77.8631 -83.5821 106.7875
15 -98.619 -83.691 -95.8307 -56.309

10-3

2 -99.3306 -67.9872 -98.3184 -13.8146
5 -64.6449 272.545 -59.0728 99.5533
10 -98.1997 -89.2863 -87.2132 89.8879
15 -97.0214 -71.9453 -94.069 -69.6066

A careful investigation of Figure 6b reveals that the proposed LM algorithm 
initiates the training process with a value of MSE which is only 2% smaller 
than the value reached at the end of network training in contrast to the NNT 
for which the initial value of MSE has been observed to be 76% lower than the 

value achieved at the end of a premature training process consisting of only 
58 epochs due to an unexpected exponential increase in the current value of  
µ . This clearly indicates that the most contributing factor towards the computed 
value of A.C.R is the magnitude of the difference between the initial and the 
final values of MSE in which the NNT apparently predominates owing to the 
incorporation of a sophisticated weight initialization procedure in the proposed 
LM algorithm resulting in a value of MSE as close as possible to the value 
achieved at the end of the training procedure. In this context, the proposed 
performance metric thus appears to be a more reliable performance measure 
than the average convergence rate since it not only encompasses the rate 
of decrease in the current value of MSE more efficiently with the progressive 
number of epochs, but also incorporates the effectiveness of the selected 
weight initialization approach towards the overall performance of the training 
algorithm. Table 2 displays the trend in the training performance improvement 
observed in terms of P.M. with the variation in the number of hidden neurons 
and the initial value of the learning rate for which the performance evaluated for 

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

16

14

12

10

8

6

4

2

0

25

20

15

10

5

0

2                     5                    10                   15NH NH
2                     5                    10                   15

2                     5                    10                   15NH NH
2                     5                    10                   15

1

0.8

0.6

0.4

0.2

0

NNT
Min-Max
Z-score

AC
R

P.
M

.

P.
M

.
AC

R

NNT
Min-Max
Z-score

NNT
Min-Max
Z-score

NNT
Min-Max
Z-score

(a) (b)

(c) (d)

Figure 5. Variation of average convergence rate (ACR) and proposed performance metric (P.M.) with no. of hidden neurons for the 2-spiral dataset [(a),(c): 1,10−µ =  (b), 
(d): 310 ].−µ =

Table 2. Performance improvement trend observed in terms of the proposed 
performance metric with variation in HN  and initµ  for the 2-spiral dataset.

Algorithm Μinit

P.M. (%)

NH=2 NH=5 NH=10 NH=15

NNT
10-1 0 82↑ 93 ↑ 95↑

10-3   71↑ 83↑ 95 ↑ 96↑

Min-Max
10-3 0 72↑ 82 ↑ 42↑

10-3 81↓ 57↑ 86 ↑ 25↑

Z-score
10-1 0 75↑ 38 ↑ 43↑

10-3 80↓ 92↑ 9 ↑ 70↑



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 7 of 13

2HN =  and 110init
−µ =  for each training algorithm has been referred to as the 

baseline reference. In case of the NNT, it can be easily noticed that the training 
performance not only improves with increasing initµ  but also with reducing 
the value of initµ  from 110−  to 310−  for each value of HN . In contrast, no such 
definite trend can be observed either with increasing HN  or decreasing initµ  
for the proposed LM algorithm regardless of which of the two normalization 
approaches selected for data conditioning in the current study have been 
employed.

Hénon

 time series dataset 

Figure 7 displays a comparison of the training performance of the proposed LM 
algorithm using either the min-max or the z-score normalization approaches 
with the NNT for the Hénon time series dataset. Accordingly, Table 3 presents 
the percentage improvement evaluated for the proposed LM algorithm over the 
NNT in training the network with this dataset using each of the two selected 
preprocessing approaches. It can be seen that the best training performance 
improvement has been evaluated for min-max normalization as the data 
conditioning approach 

 

0.248

0.246

0.244

0.242

0.24

0.238

0.236

0.5

0.45

0.4

0.35

0.3

0.25

NNT
Min-Max

1                            10                         100         300
Niter

1                            10                          100         300
Niter

NNT
Z-score

M
SE

M
SE

(a) (b)

Figure 6. Evolution of MSE during network training with the proposed LM algorithm and the NNT for the 2-spiral dataset: (a) best performance improvement ( 2HN = and 
110 );init

−µ =  (b) worst performance improvement ( 2HN = and 310 ).init
−µ =

5

4

3

2

1

0

5

4

3

2

1

0
2                     5                   10                  15 2                     5                   10                  15NH

2                     5                   10                  15NH
2                     5                   10                  15

NH

NH

NNT
Min-Max
Z-score

AC
R

900

800

700

600

500

400

300

200

100

0

1000

800

600

400

200

0

P.
M

.

P.
M

.
AC

R

NNT
Min-Max
Z-score

(a) (b)

NNT
Min-Max
Z-score

NNT
Min-Max
Z-score

(c) (d)

Figure 7. Variation of average convergence rate (ACR) and proposed performance metric (P.M.) with no. of hidden neurons for the Hénon dataset [(a),(c): 1,−µ =10  (b),(d): 
3− µ =10 ]. 

Henon 

'

` é Hénon 



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 8 of 13

Table 3. Training performance of the proposed LM algorithm for the two data 
preprocessing approaches in terms of percentage improvement over the NNT for 
the Hénon time series dataset.

μinit NH

Z-Score Min-Max

A.C.R (%) P.M. (%) A.C.R (%) P.M. (%)

10-1

2 -28.4616 -27.7947 -31.0741 -40.0539

5 -39.6204 -27.4269 -28.1732 -9.2062

10 -33.3885 -9.4681 -45.7471 -31.8946

15 -52.8348 10.7603 -40.4666 5.6797

10-3

2 -31.8380 -34.4650 -33.7811 -37.0933

5 -10.5531 18.1308 -5.7137 48.5464

10 -39.0565 -32.7276 -41.0382 -27.0443

15 -49.4055 -26.4054 -38.2735 -24.7421

which results in an almost 49% higher value of P.M. for 5HN =  and ,initµ  
while the worst has been predicted for the case of z-score normalization which 
shows an almost 53% lower value of A.C.R than the NNT for 15HN =  and 

110 .init
−µ =  Averaging the data given in Table 3 over the four selected values 

of HN  and the two different values of ,initµ  the proposed LM algorithm results 
in an almost 33% lower value of A.C.R while a 15% lower value of P.M. than 
the NNT when min-max normalization is used as the data preprocessing 
technique, while a 36% lower value of A.C.R and a 16% lower value of 
P.M. for the case when z-score normalization is employed. Each of the two 
aforementioned cases of performance improvement have been demonstrated 
in Figure 8 in terms of the MSE evolution profiles obtained during the course 
of network training using the proposed LM algorithm as well as the NNT. A 
detailed examination of Figure 8 reveals that the training process visualized in 
Figure 8b conducted using the proposed LM algorithm not only initiates with 
a value of MSE which is almost 100% smaller than the corresponding value 
observed in Figure 8a, but also ends with an MSE value being almost 79% 
smaller. This fact coupled with the observation that the initial value of MSE 
observed for the training process conducted using the proposed LM algorithm 
in Figure 8b is 200% smaller than the corresponding value observed using the 
NNT, with the final value being only 56% larger, the proposed performance 
metric thus gauges the training efficiency of the proposed LM algorithm more 
accurately than the A.C.R as also observed earlier in case of the 2-spiral 
dataset. Table 4 displays the trend in the training performance improvement 

observed in terms of P.M. with the variation in the number of hidden neurons 
and the initial value of the learning rate where the performance evaluated for 

2HN = and 110init
−µ =  for each training algorithm has been referred to as 

the baseline reference. It can be noticed that there is absolutely no definite 
trend which can be observed with either increasing HN  or decreasing initµ
in case of the NNT. In contrast, an increase in performance improvement can 
be observed for the proposed LM algorithm using the min-max normalization 
approach with reduction in initµ from 110− to 310− for all values of HN  except 
for 15HN = , while a corresponding decrease can be noticed for the case 
of z-score normalization with the exception of 5HN = . However, absolutely 
no definite trend in performance improvement with increasing HN can be 
observed for either of these two data conditioning approaches regardless of 
the initially selected value of µ  as discussed above for the case of the NNT.

Table 4. Performance improvement trend observed in terms of the proposed 
performance metric with variation in HN  and initµ  for the Hénon time series 
dataset.

Algorithm  μinit
P.M. (%)

 NH=2 NH=5   NH=10  NH=15

NNT
10-1 0 12↓ 1↓ 58↓

10-3 2↓ 52↓ 6↑ 14↓

Min-Max
10-1 0 26↑ 11↑ 11↑

10-3 3↑ 39↑ 23↑ 9↑

Z-score
10-1 0 11↓ 20↑ 3↓

10-3 12↓ 7↑ 1↓ 12↓

Lorenz 

time series dataset 

Figure 9 displays a comparison of the training performance of the proposed LM 
algorithm using either the min-max or the z-score normalization approaches 
with the NNT for the Lorenz time series dataset, while the corresponding 
percentage improvement evaluated for the proposed LM algorithm over 
the NNT in training the network using the selected values of HN  and initµ  
is displayed in Table 5. It can be noticed that both the best and the worst 
performance improvement cases can be observed for the case of min-max 
normalization as the data conditioning approach exhibiting an almost 1281% 

Figure 8. Evolution of MSE during network training with the proposed LM algorithm and the NNT for the Hénon time series dataset: (a) best performance improvement 
5HN = and 310 );init

−µ =  (b) worst performance improvement ( 15HN = and 110 ).init
−µ =

Lorenz 
Lorenz



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 9 of 13

4

3.5

3

2.5

2

1.5

1

0.5

0

2000

1500

1000

500

0

1600

1400

1200

1000

800

600

400

200

0

4

3.5

3

2.5

2

1.5

1

0.5

0
2                     5                   10                  15 2                     5                   10                  15

2                     5                   10                  15

NH

2                     5                   10                  15
NH

NH

NH

NNT
Min-Max
Z-score

NNT
Min-Max
Z-score

NNT
Min-Max
Z-score

NNT
Min-Max
Z-score

A
C

R
P.

M
.

P.
M

.
A

C
R

(a) (b)

(d)(c)

Figure 9. Variation of average convergence rate (ACR) and proposed performance metric (P.M.) with no. of hidden neurons for the Lorenz time series dataset [(a,c): 
110 ,µ =  (b,d): 310 ].−µ = ].

higher value of P.M. evaluated for 2HN =  and 3
init 10 ,−µ =  while an almost 84% 

lower value of A.C.R evaluated for 2HN =   and 1
init 10 ,−µ =  respectively. 

Table 5. Training performance of the proposed LM algorithm for the two data 
reprocessing approaches in terms of percentage improvement over the NNT for the 
Lorenz time series dataset.

μinit NH

Z-Score Min-Max

A.C.R (%) P.M. (%) A.C.R (%) P.M. (%)

10-1

2 -0.2371 1074.8 -83.5954 341.3545
5 -32.9565 33.9637 -36.2007 67.3175
10 0.7485 150.3618 -20.5572 277.0999
15 -7.8662 78.2490 -30.5572 81.1244

10-3

2 -19.6457 574.8324 -30.4296 1280.8
5 -41.6891 78.7240 -43.9454 53.2122

10 3.7078 241.2552 -22.4300 180.8576
15 7.4736 140.2018 -58.2703 79.9875

Averaging the data given in Table 5 over the four selected values of HN  and 
the two different values of init,µ , the proposed LM algorithm results in an almost 
41% lower value of A.C.R and a 295% higher value of P.M. than the NNT when 
min-max normalization is used as the data preprocessing technique, while an 
11% lower value of A.C.R and a 297% higher value of P.M. for the case when 
z-score normalization is employed. Since each of the two aforementioned 
performance improvement extremes have been observed for 2,HN =  the 
corresponding MSE evolution profiles demonstrated in Figure 10 can thus be 
used as a guideline for assessing the probable effects of the initial value of 
the learning parameter on the training performance of each training algorithm 

for the Lorenz time series dataset. It can be clearly observed that despite the 
exact same initial values of MSE, switching the value of init,µ  from 

110−
 

to 310−  in the proposed LM algorithm using min-max normalization as the 
data preprocessing approach results in lowering the value of MSE reached 
at the end of network training by almost 163% compared to absolutely no 
such reduction observed for the training process conducted using the NNT. 
As shown in Table 5, the value of the performance metric evaluated for the 
proposed LM algorithm using the min-max normalization approach is still 
almost 341% larger than that evaluated for the 

This not only reflects that the value of P.M. is not as sensitive towards the 
change in the initial value of µ  as the A.C.R, but also reveals the influence 
of the refinement of the initial guess towards the formulation of the proposed 
performance metric in contrast to the predicted value of A.C.R which is 
apparently related inversely to the level of sophistication of the method used 
for weight initialization. Table 6 displays the trend in the training performance 
improvement observed in terms of P.M. with the variation in the number of 
hidden neurons and the initial value of the learning rate where the performance 
evaluated for 2HN = and 110init

−µ =  for each training algorithm has been 
referred to as the baseline reference. It can be observed that absolutely no 
trend in performance improvement is noticeable for both the NNT as well as 
the proposed LM algorithm for the case of min-max normalization, whereas 
data preprocessing accomplished using the z-score normalization has been 
observed to result in a generally increasing trend in training performance either 
with increasing initµ  for the same value of initµ  or with reduction in initµ  
from 110−  to 310−  for the same value of HN .



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 10 of 13

Table 6. Performance improvement trend observed in terms of the proposed 
performance metric with variation in HN  and initµ  for the Lorenz time series 
dataset.

Algorithm μinit

                          P.M. (%)

 NH=2 NH=5   NH=10  NH=15

NNT
10-1 0 96↑ 96↑ 98↑

10-3 58↑ 97↑ 96↑ 96↑

Min-Max
10-1 0 90↑ 95↑ 95↑

10-3 87↑ 90↑ 93↑ 91↑

Z-score
10-1 0 67↑ 81↑ 86↑

10-3 27↑ 78↑ 85↑ 82↑

Parity-7 dataset 

Figure 11 displays a comparison of the training performance evaluated for the 
proposed LM algorithm using either the min-max or the z-score normalization 
approaches with the NNT for the Parity-7 dataset, whereas Table 7 presents 
the corresponding summary of the percentage performance improvement for 
the proposed LM algorithm over the NNT predicted in terms of both A.C.R as 
well as P.M. for different values of HN  and the two selected initial values of µ. 
It can be noticed that the proposed LM algorithm exhibits both the best and the 
worst performance improvement cases in terms of the proposed performance 
metric for min-max normalization as the data conditioning approach, with the 
best being almost 60.30% evaluated for 10HN =  and 310 ,init

−µ =  while the 
worst being almost 97% evaluated for 5HN =  and 310init

−µ = . Averaging 
the data given in Table 7 over the four selected values of HN  and the two 
different values of init,µ the proposed LM algorithm results in an almost 37% 
lower value of A.C.R and a 97.5% higher value of P.M. than the NNT when 
min-max normalization is used as the data preprocessing technique, while a 
19% lower value of A.C.R and a 75.6% higher value of P.M. for the case when 
z-score normalization is employed.  A close investigation of Figure 12 which 
displays the MSE evolution profiles for the aforementioned best and the worst 
performance improvement cases reveals a completely reciprocal influence of 
the variation in the number of hidden neurons on the training performance 
evaluated for the proposed LM algorithm compared to that evaluated for the 
NNT. More specifically, for the same value of 310 ,init

−µ =  increasing the 
number of hidden neurons from 5 to 10 reduces the MSE at the end of network 
training by almost 200% in case of the NNT, while raises it by virtually the same 
magnitude in case of the proposed LM algorithm. Table 8 displays the trend 
in the training performance improvement observed in terms of P.M. with the 
variation in the number of hidden neurons and the initial value of the learning 

 
Figure 10. Evolution of MSE during network training with the proposed LM algorithm and the NNT for the Lorenz time series dataset: (a) best performance improvement 

2HN =  and 310 );init
−µ =  (b) worst performance improvement ( 2HN = and 110 )init

−µ = . NNT for 2HN =   and 110init
−µ = . 

rate where the performance evaluated for 110init
−µ =  and 110init

−µ =  for each 
training algorithm has been referred to as the baseline reference. It can be 
observed that absolutely no trend in performance improvement with either 
increasing HN  or reducing initµ  from 110−  to 310−  is noticeable for each of 
the NNT as well as the proposed LM algorithm with min-max normalization 
as the data conditioning approach, whereas a clearly increasing trend with 
increasing HN  can be observed for the case of z-score normalization for 

310 .init
−µ =  Figure 13 displays the values of the MSE reached at the end of the 

training procedure for the NNT as well as the proposed LM algorithm with min-
max normalization as the data preprocessing approach, and 5 to 10 neurons 
employed in the hidden layer. 

Table 8. Performance improvement trend observed in terms of the proposed 
performance metric with variation in HN  and HN  for the Parity-7 dataset.

Algorithm μinit

                                       P.M. (%)

 NH=2 NH=5  NH=10  NH=15

NNT
10-1 0 100↑ 100↑ 100↑

10-3 16↓ 100↑ 97↑ 100↑

Min-Max
10-1 0 100↑ 100↑ 100↑

10-3 30↑ 89↑ 100↑ 100↑

Z-score
10-3 0 100↑ 100↑ 100↑

10-3 18↑ 86↑ 99↑ 100↑

In general, the two types of training algorithms can be observed to exhibit a 
roughly reciprocal trend in MSE variation with increasing HN  except when 
either 8 or 9 neurons are employed in the hidden layer for which virtually the 
same value of MSE is reached at the end of the training procedure. More 

Table 7. Training performance of the proposed LM algorithm for the two data 
reprocessing approaches in terms of percentage improvement over the NNT for 
the Parity-7 dataset.

 μinit
NH

            Z-Score            Min-Max

A.C.R (%) P.M. (%) A.C.R (%) P.M. (%)

 10-1

2 -9.1581 870.2415 -12.1602 187.4554
5 59.2163 -42.2796 -42.2527 -78.0570

10 -45.2078 313.4969 -50.9257 234.5603
15 -72.002 593.5522 -71.3155 702.4687

 10-3

2 76.3906 1264.2385 72.3079 373.3809
5 -85.7460 -92.4457 -92.9680 -97.2954

10 3.7078 2742.2 -22.4300 6030.2
15 -75.8734 394.6299 -75.6122 448.9363



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 11 of 13

importantly, it is worth noticing in Figure 13 that the proposed LM algorithm with 
min-max normalization as the data conditioning approach requires a minimum 
of 6 hidden neurons for.

Conclusion

A modified version of the LM algorithm incorporating exact forms of the Hessian 
and the gradient derived via direct differentiation for training a multilayer 
feedforward neural network with a single hidden layer has been proposed. 
The weights have been initialized using a linear least squares method while 
the network has been trained on four types of exemplary datasets namely the 
2-spiral, the Hénon time series, the Lorenz time series, and the Parity-7. Two 
types of conventionally employed data normalization approaches, namely 
the min-max normalization and the z-score normalization, have been used 
in conjunction with principal component analysis for preprocessing the raw 
input data for each type of dataset. A novel performance metric (P.M.) has 
been formulated which, in conjunction with the average convergence rate 

 
Figure 11. Variation of average convergence rate (ACR) and proposed performance metric (P.M.) with no. of hidden neurons for the Parity-7 dataset [(a,c): 

1,−µ =10  (b,d): 3 .− µ =10 ]. 

 
Figure 12. Evolution of MSE during network training with the proposed LM algorithm and the NNT for the Parity-7 dataset: (a) best performance improvement 10HN =  
and 310 )init

−µ = , (b) worst performance improvement ( 5HN = and 310 ).init
−µ =

 
Figure 13. Values of MSE reached at the end of network training for the Parity-7 
dataset using the proposed LM algorithm and the NNT for increasing values of HN  
successfully classifying the Parity-7 dataset in contrast to the NNT for which+h a 
minimum of 7 neurons in the hidden layer are required.



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 12 of 13

(A.C.R), has been employed to compare the training results achieved using 
the proposed LM algorithm with the corresponding ones obtained using the 
Neural Network Toolbox in MATLAB® (R2017a). Averaging the training results 
over the four selected datasets, four different number of neurons in the hidden 
layer, and two different initial values of the learning rate, the proposed LM 
algorithm has been predicted to result in a 48% lower value of A.C.R and a 
340% higher value of P.M. than the Neural Network Toolbox when min-max 
normalization has been used as the data conditioning approach, whereas a 
39% lower value of A.C.R and a 260% higher value of P.M. for the case when 
z-score normalization has been employed. Hence, the z-score normalization 
as the data preprocessing approach has been predicted to yield a roughly 
21% better training performance than the min-max normalization in terms 
of the average convergence rate, whereas the min-max normalization has 
been evaluated to result in an almost 27% better training performance than 
the z-score normalization when the proposed performance metric has been 
employed as the performance measure. For network training conducted on 
the Parity-7 dataset, the proposed LM algorithm combined with min-max 
normalization as the data preprocessing approach has been evaluated to 
result in an almost 6030% better training performance in terms of the proposed 
performance metric than the Neural Network Toolbox when 10 neurons in 
the hidden layer and an initial value of 10-3 for the learning rate have been 
employed. In addition, the proposed LM algorithm with min-max normalization 
as the data preprocessing approach needs a minimum of 6 hidden neurons 
for successfully classifying the Parity-7 dataset as compared to the Neural 
Network Toolbox for which a minimum of 7 hidden neurons are required. A 
careful comparison of the training results achieved in the study using the 
proposed LM algorithm with those obtained using the Neural Network Toolbox 
suggests that the proposed performance metric can be regarded as a more 
reliable performance measure than the average convergence rate since it not 
only has been observed to assess the rate of decrease in the current value of 
MSE more efficiently with the progressive number of epochs, but has also been 
noticed to incorporate the effectiveness of the selected weight initialization 
approach towards the overall performance of the training algorithm. The study 
can prove to be a valuable addition to the current literature dedicated towards 
the development of increasingly sophisticated machine learning algorithms 
designed for high-performance commercial applications.

Acknowledgements

The authors are highly thankful to the School of Mechanical and Manufacturing 
Engineering, National University of Sciences and Technology, Islamabad, 
Pakistan, for the assistance it has provided during the theoretical development 
of the work, as well as for offering its up-to-date computational facilities without 
availing which the results presented in the study would not have been possible. 

Compliance with ethical statement

Conflict of interest: The authors declare that they have no mutual conflict of 
interest(s) to declare.

Ethical approval: This article does not contain any studies involving human 
participants or animals conducted by any of the authors.

Data availability statement: The sources of each of the four types of datasets 
which have been utilized to obtain the results of the training procedure 
conducted upon the selected network architecture have been cited in the 
“References” section of the manuscript.

Sources of funding: The authors declare that absolutely no agencies or 
collaborating organizations, either academic or industrial, have been involved 
in providing the funds required to accomplish the current format of the 
manuscript.

References
1.	 Vercellis, Carlo. “Business Intelligence: Data Mining and Optimization for 

Decision Making. New York” Wiley  (2009).

2.	 Cai, Jia-xin, Ranxu Zhong, and Yan Li. "Antenna Selection for Multiple-Input 
Multiple-Output Systems Based on Deep Convolutional Neural Networks." PloS  
5 (2019): 672.

3.	 Hamori, Shigeyuki, Minami Kawai, Takahiro Kume, and Yuji Murakami et al. 
"Ensemble Learning or Deep Learning? Application to Default Risk Analysis." J 
Risk Uncertain  11 (2018): 12.

4.	 Arpit, Devansh, Yingbo Zhou, Bhargava U. Kota, and Venu Govindaraju. 
"Normalization Propagation: A Parametric Technique for Removing Internal 
Covariate Shift in Deep Networks." ArXiv Preprint ArXiv  (2016).

5.	 Aksu, Gökhan, Cem Oktay Güzeller, and Mehmet Taha Eser. "The Effect of 
the Normalization Method Used in Different Sample Sizes on the Success of 
Artificial Neural Network Model." IJATE  6 (2019): 170-192.

6.	 Asadi, Roya, and Sameem Abdul Kareem. "Review of Feed Forward Neural 
Network Classification Preprocessing Techniques." AIP 1602 (2014): 567-573. 

7.	 Truong, Thanh-Dat, Vinh-Tiep Nguyen, and Minh-Triet Tran. "Lightweight Deep 
Convolutional Network for Tiny Object Recognition." ICPRAM  (2018): 675-682.

8.	 Angermueller C, Pärnamaa T, Parts L, and Stegle O. “Deep Learning for 
Computational Biology.” Mol Syst Biol 12 (2016): 878-893.

9.	 Wu, Leihong, Xiangwen Liu, and Joshua Xu. "HetEnc: a Deep Learning 
Predictive Model for Multi-type Biological Dataset." BMC Genomic 20 (2019): 
638.Yao, Yuan, Lin Feng, Bo Jin, and Feng Chen. "An Incremental Learning 
Approach with Support Vector Machine for Network Data Stream Classification 
Problem." Inf Technol J  11 (2012): 200.

10.	Yao Y, Feng L, Jin B, and Chen F. “An Incremental Learning Approach with 
Support Vector Machine for Network Data Stream Classification Problem.” Inf 
Technol J  11 (2012) 200-208.

11.	Mohd Nawi, Nazri, Walid Hasen Atomia, and Mohammad Zubair Rehman. 
"The Effect of Data Pre-Processing on Optimized Training of Artificial Neural 
Networks." ICEEI  (2013).

12.	Nayak, S C, B B Misra, and H S Behera. "Index Prediction with Neuro-Genetic 
Hybrid Network: A Comparative Analysis of Performance." IEEE  (2012): 1-6.

13.	Jin, Jian, Ming Li, and Long Jin. "Data Normalization to Accelerate Training for 
Linear Neural Net to Predict Tropical Cyclone Tracks." Math Probl Eng  (2015).

14.	Kuźniar, Krystyna, and Maciej Zając. "Some Methods of Pre-processing Input 
Data for Neural Networks." Comput Methods Appl Mech Eng  2  (2017): 141-
151.

15.	Asteris, Panagiotis G, Panayiotis C Roussis, and Maria G Douvika. "Feed-
Forward Neural Network Prediction of the Mechanical Properties of Sandcrete 
Materials." J Sens  17 (2017): 1344.

16.	Akdemir, Bayram, Salih Güneş, and Şebnem Yosunkaya. "New Data Pre-
processing on Assessing of Obstructive Sleep Apnea Syndrome: Line Based 
Normalization Method (LBNM)." Springer (2008) 185-191.

17.	Cao, Xi Hang, Ivan Stojkovic, and Zoran Obradovic. "A Robust Data Scaling 
Algorithm to Improve Classification Accuracies in Biomedical Data." BMC 
Bioinformatics  17 (2016): 359.

18.	Nu, Qadir, and S M Smith. "Direct Differentiation Based Hessian Formulation 
for Training Multilayer Feed forward Neural Networks using the LM Algorithm-
Performance Comparison with Conventional Jacobian-Based Learning." Global 
J Technol Optim 9 (2018): 223.

19.	Chow, TWS, and Cho SY. “Neural networks and computing: learning algorithms 
and applications.” Imperial College Press. (2007).

20.	Kessy, Agnan, Alex Lewin, and Korbinian Strimmer. "Optimal Whitening and 
Decorrelation." Am Stat  72 (2018): 309-314.

21.	Kusy, Maciej. "Dimensionality Reduction for Probabilistic Neural Network in 
Medical Data Classification Problems." AEU-INT J Electron C  61 (2015).

22.	Dhar, V K, A K Tickoo, R Koul, and B P Dubey. "Comparative Performance of 
Some Popular Artificial Neural Network Algorithms on Benchmark and Function 
Approximation Problems." Pramana  74 (2010): 307-324.



Global J Technol Optim, Volume 11:1, 2020Qadir NUI, et al.

Page 13 of 13

23.	Li, Qinghai, and Rui-Chang Lin. "A New Approach for Chaotic Time Series 
Prediction Using Recurrent Neural Network." Math Probl Eng  2016 (2016).

24.	Alfaro, Miguel, Guillermo Fuertes, Manuel Vargas, Juan Sepúlveda, and Matias 
Veloso-Poblete. "Forecast of Chaotic Series in a Horizon Superior to the Inverse 
of the Maximum Lyapunov Exponent." Complexity  2018 (2018).

How to cite this article: Qadir, Najam UI, Md. Rafiul Hassan and 
Khalid Akhtar. “Influence of Principal Component Analysis as a Data 
Conditioning Approach for Training Multilayer Feedforward Neural 
Networks with Exact Form of Levenberg-Marquardt Algorithm.”  
Global J Technol Optim 11 (2020): 239. doi: 10.37421/GJTO.2020.11.239




