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Abstract

Diabetes is one of the most prevalent metabolic disorders. In diabetes, incidence of coronary artery diseases and
peripheral vascular diseases is increased 2- to 4-fold and 10-fold, respectively, compared to healthy individuals. In
spite of extensive studies, the underlying mechanisms of endothelial dysfunction (ED), an early event in the
development of vascular diseases, remain incompletely understood in diabetes. This mini-review discusses the role
and signaling pathways of calpains - a family of Ca2+-sensitive intracellular proteases in nitric oxide (NO)-mediated
ED in diabetes. We conclude that activation of calpains, especially μ-calpain, plays an important role in the
pathogenesis of NO-mediated ED and inflammatory responses in diabetes which is mainly via endothelial Nitric
Oxide Synthase (eNOS) inactivation/degradation in macro- and micro-vasculature. We review existing literature
demonstrating that hyperhomocysteinemia, elevated plasma homocysteine level, potentiates hyperglycemia-induced
ED via μ-calpain/PKCβ2 activation-induced eNOS-pThr497/495 and eNOS inactivation. μ-calpain may be a critical
therapeutic target for NO-mediated ED in diabetes.

Keywords: μ-Calpain; Endothelial dysfunction; Nitric oxide-
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Introduction
Diabetes, one of the most prevalent metabolic disorders, is

estimated to affect 400 million or 4.4% of population worldwide in the
next 20 years [1,2]. Vascular abnormalities are the major contributor
to the progression of diabetes which is associated with complications
often linked to the increased morbidity and mortality. In diabetic
patients, coronary artery disease and peripheral vascular diseases are
increased to 2- to 4-fold and 10-fold, respectively, compared to non-
diabetic individuals.

The endothelium is a monolayer of endothelial cells (ECs) lining
the lumen of all blood vessels and functions as a protective
biocompatible barrier between tissues and circulating blood. In
human, there is a range of 1-6×1013 ECs covering the surface area of
more than 1,000 square meters of endothelium [3,4]. The endothelium
plays a key role in the control of vasomotor tone and organ perfusion,
and contributes to regulation of arterial blood pressure, by releasing
vasodilator substances and vasoconstrictor substances [5,6].
Endothelial dysfunction (ED) is a systemic pathological condition,
which can be characterized by an impairment of endothelium-
dependent vasodilatation. ED is an early event in the development of
cardiovascular disease prior to any visible morphological changes in
endothelium. Recently, ED has been linked to endothelial activation
[7] including increased interaction between inflammatory cells/factors
(leukocytes, intercellular adhesion molecule , vascular cell adhesion
molecule 1 and selectins) and endothelial cells, and albumin leakage.
Numerous studies have showed that the endothelial function is
impaired in both diabetic patients and animals. Therefore,

understanding the underlying mechanisms of ED may provide novel
promising therapeutic strategies for the treatment of cardiovascular
diseases in diabetes.

Calpains are a family of cytosolic calcium-dependent cysteine-
proteases which tightly regulate their respective substrates through
limited proteolytic cleavage. Elevated calpains expression or activity
has been found in patients [8] and experimental animals [9,10] with
diabetes. Inhibition of calpains activity rescues hyperglycemia-
mediated vascular injury, inflammation and ED [9,10].

Endothelial nitric oxide (NO) was first recognized as a major
vasodilator involved in control of vasomotor function and local blood
flow. Endothelial NO is mainly generated by constitutively active
endothelial NO synthase (eNOS), an essential enzyme responsible for
vascular homeostasis. Loss of NO bioavailability as a result of decrease
of eNOS activity has been speculated to play an essential role in the
pathogenesis of ED. In this review, we summarize the current
understanding of the role of calpains activation and signaling
pathways in NO-mediated ED in diabetes.

Calpain Family
There are currently 15 known human calpain isoform genes.

Members of the calpain family are believed to function in various
biological processes, including integrin-mediated cell migration,
cytoskeletal remodeling, cell differentiation and apoptosis [11].
Activation of calpain has been implicated in the acute and chronic
hyperglycemia (HG)-induced ED [9,10], platelet
hyperaggregability[12], neurovascular dysfunction [13] and
cardiomyocyte apoptosis[12] in diabetes. Within the calpain family,
micro (µ)- and milli (m)-calpain are the two most well characterized
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isoforms. μ- and m-calpain are ubiquitously expressed in mammals,
and are activated by micro- and millimolar calcium concentrations in
vitro, respectively [11]. Both proteins are heterodimers composed of a
large 78-80 kDa catalytic subunit and a common small 29 kDa
regulatory subunit [14]. The large subunit comprises four domains
(dI-dIV), whereas the small subunit has two domains (dV-dVI). When
calpains are activated, they undergo autoproteolysis which removes N-
terminal in dI (NT, 27 and 19 amino acids from large subunit
(catalytic subunit) of μ- and m-calpain, respectively) [14]. Thus lowers
levels of calpain large subunit NT indicates higher degrees of
proteolytic activity of calpain [1,15]. Total μ- and m-calpain content
was quantified using a primary antibody against the stable domain IV
of the large subunit, which recognizes both unautolyzed and autolyzed
μ- and m-calpain [1,15]. Previously, it was considered that the calcium
influxes are mainly responsible for the activation of calpains. However,
the calcium concentrations required for its activation in vitro are
much higher compare to that in the physiological condition (100 nM
to 10 µM) and not consistent with cell survival. Several mechanisms
have been suggested for calpains activation in the presence of lower
calcium concentration, such as mitochondrial translocation of calpains
via increasing mitochondrial oxidative stress [16] and
posttranslational modifications of calpains by kinases thus indirectly
activate calpains by increasing its sensitivity to calcium [17].
Activation of µ-calpain is also regulated by its membrane localization
and by its binding to phosphatidylinositol [18]. Moreover, Na+/H+

exchanger is required in hyperglycemia-induced calpains activation
[19].

Both μ- and m-calpain are specifically countered by the endogenous
calpain inhibitor, calpastatin [11]. Several substrates for calpains have
been identified, including cytoskeletal proteins, membrane receptors,
protein kinases, and transcription factors [11].

Calpains in Diabetes
Calpain-10 is the first calpain gene identified in diabetes. The

polymorphism of calpain-10 has been linked and associated with
diabetes susceptibility, glucose homeostasis, insulin secretion and
insulin activation [20,21]. Decreased calpain-3 expression in skeletal
muscle is associated with obesity and insulin resistance and linked to
diabetes mellitus [22].

The μ-calpain (calpain-1) is activated in diabetes. Activation of μ-
calpain has been suggested to be linked to impairment of glucose
transporter turnover [23] and ED [9,10,1,24]. Acute exposure of
mouse pancreatic islets to μ-calpain decreased insulin-stimulated
glucose uptake into adipocytes, skeletal muscle, and glycogen synthesis
in muscle. Inhibition of μ-calpain by μ-calpain antisense
oligonucleotides or siRNA rescued high glucose-induced ED and
vascular inflammation in the micro- and macro-vasculature
[9,10,1,24].

Taken together, calpains, especially calpain-10 and -, and µ-calpain
play an important role in the pathogenesis of diabetes, such as insulin
resistance, insulin secretion, glycogen synthesis, glucose transporter
turnover and ED. Different calpain seem to serve unique roles in the
pathogenesis of diabetes, thus discovery of selective calpain inhibitors
are critically for the treatment of cardiovascular complications in
diabetes.

Calpain Activation in ECs
Both μ- and m-calpain are expressed in vascular cells, including ECs

and vascular smooth muscle cells (VSMCs). The role of calpains in
regulation of EC functional properties has been extensively examined.
Calpains act in ECs, thus maintaining vascular physiological integrity
[25-27]. Whereas, over activation of calpains appears to play an
important role in pathogenesis of angiogenesis [11,28], ED
[9,10,24,29] and wound healing [30]. Many factors have been
suggested to induce calpains activation in ECs (Figure 1). Vascular
endothelial growth factor increased µ-calpain activity in both human
microvascular and bovine aortic endothelial cells [11,31]. Shear stress
increased µ-calpain activity in mouse aortic and human umbilical vein
endothelial cells (HUVECs) [11,26,32]. Angiotensin II induces µ-
calpain activation in the endothelia cells of mouse postcapillary
venules [29]. Hypoxia induces calpains activation in porcine
pulmonary artery ECs [33]. Moreover, oxidized LDL enhanced μ-
calpain activity in HUVECs [34]. Antioxidants reduced µ-calpain but
not m-calpain activity in mouse pulmonary microvascular endothelial
cells. High glucose increases µ-calpain activity in HVECs [35] and
mouse micro- and macro-vascular endothelial cells mouse
[9,10,15,24].

Hyperhomocysteinemia (HHcy) - elevated plasma homocysteine
(Hcy) concentration has been considered as an independent risk factor
for the development of ED [6,15,36]. Recent studies shown a high
prevalence of HHcy in patients with diabetes and that plasma
concentration of Hcy is positively correlated with cardiovascular
mortality and morbidity in diabetes [37]. However the interaction
between HHcy and diabetes and the role of HHcy/diabetes on the
pathogenesis of cardiovascular diseases remain incompletely
understood. We and other groups have shown that HHcy increased μ-
calpain activity in micro- and macro-vascular ECs [15,16]. Calpain
activity is increased in mice with HHcy and cultured rat heart
microvascular ECs [16,38]. Moreover, HHcy induces the translocation
of active μ-calpain from cytosol to mitochondria, leading to increased
intramitochondrial oxidative stress in cultured rat heart microvascular
endothelial cells [16]. We recently studied the effect of HHcy on
hyperglycemia-induced calpains activation [15]. We found that D-Hcy
(500 μM) for 48 hours potentiated D-glucose (25 mM)-induced
calpains activation in both human and mouse aortic endothelial cells
[15]. Moreover, μ-calpain siRNA significantly inhibited HHcy/
hyperglycemia-induced calpains activity. By our knowledge, we are the
first to report that HHcy potentiates hyperglycemia-induced μ-calpain
activation in macro-vascular ECs [15]. We believe that our findings
will provide fundamental insights for the prevention and treatment of
cardiovascular diseases in patients with diabetes and HHcy.

Calpains-induced ED in Diabetes
In response to pathophysiological stimulation, the endothelium

maintains vascular hemostasis by releasing vasodilator substances,
such as nitric oxide (NO), prostacyclin (PGI2) and endothelium-
derived hyperpolarizing factor (EDHF), and vasoconstrictor
substances, such as angiotension II, endothelin-1, thromboxane A, and
prostaglandin H2 [5,6]. ED is characterized by and often defined as a
reduced EDV response to an endothelium-dependent vasodilator,
such as acetylcholine or bradykinin, or to flow-mediated
vasodilatation [39]. Therefore, understanding the effect of calpains on
the vasodilator and vasoconstrictor substances and underlying
mechanisms could provide therapeutic insight in the prevention and
treatment of ED in diabetes. In fact, accumulative evidence showed
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that inhibition of calpains rescued ED and prevented interaction
between inflammatory cells (leukocytes)/factors (intercellular
adhesion molecule-1 and vascular cell adhesion molecule-1) with ECs

in diabetes (Table 1) [9,10,13,15,24,40,41]. However the underlying
mechanisms remain unclear.

Procedure for calpains
inhibition

Animal Vessels Effective dose Outcomes Ref.

MDL-28170 STZ-treated mouse Thoracic aorta 2 mg/kg/day, i.p. 2 weeks NO-mediated vascular
relaxation to ACh↑

[15]

MDL-28170, ALLM STZ-treated mouse Thoracic aorta Aorta were preincubated with
20 μM of MDL-28170, ALLM or
calpeptin for 1h, ex vivo

NO-mediated vascular
relaxation to ACh↑

[15]

siRNA against μ-calpain C57BL/6 mouse Thoracic aorta Vessels treated with D-glucose
and μ-calpain siRNA for 72h, in
vitro

NO-mediated vascular
relaxation to ACh↑

[15]

ZLLal C57BL6 mouse injected with D-
glucose

Mesenteric artery 18 μg/kg/day, i.p., one time Leukocyte-endothelium
interactions↓, NO
production↑

[10]

ZLLal Zucker diabetic fatty rat Mesenteric artery 27 μg/kg/day, i.p., 5 days Leukocyte-endothelium
interactions↓, NO
production↓

[9]

ZLLal and μ-calpain antisense
oligonucleotides

Zucker diabetic fatty rat Mesenteric artery ZLLal: 27μg/kg/day, i.p., 4 days
μ-calpain antisense
oligonucleotides: 1mg/kg/day,
i.p., 4 days

Microvascular albumin
leakage↓

[24]

Over-expression of calpastatin Calpastatin transgenic/STZ-
treated, calpastatin
transgenic/db/db, and calpastatin
transgenic/OVE26 mouse

Aorta NO- and EDHF-mediated
vascular relaxation to
ACh↑

[41]

ZLLal

PD150606

STZ-treated rats Mesenteric post -
capillary venules

ZLLal: 27 μg/kg/day, i.p., 4 days

PD150606: 1mg/kg/day, i.p., 4
days

Leukocyte-endothelium
interaction↓

[29]

MDL-28170 C57BL6 mouse Aorta Aorta were treated with heavily
oxidized’ glycated LDL and
MDL-28170 (20 μM) for 6h, in
vitro

Vascular relaxation to
ACh↑

[40]

A-705253 STZ-treated mouse Cavernosa 30 mg/kg/day, 2 weeks Cavernosa relaxation to
ACh↑

[13]

Table 1: Effects of calpains inhibition on ED in diabetic animal models.

Effects of calpains activation on eNOS expression/activity and
eNOS signaling pathways have been extensively studied. NO
production in ECs is modulated through calpains-induced proteolysis
of eNOS-associated proteins, such as heat shock proteins 90 (hsp90)
[42], caveolin [42], eNOS itself [31,34], Akt [43] or interruption of
Akt, hsp90 and eNOS binding [9,10,43] or regulation of PI3K/AMPK
signaling [31]. Activation of calpains also leads to disruption of eNOS
localization by caveolin-3 breakdown in caveolae structures thus
induces aberrant eNOS uncoupling [44].

Protein kinase C (PKC) is an important signaling molecule
associated with ED in diabetes. Activation of endothelial PKC induces
ED in diabetes via regulation of vasodilators and vasoconstrictors
[45,46]. Within the PKC family, PKCβ2 has received much attention
since it was first shown to be preferentially in diabetic vascular tissue
[47]. PKCβ2 activation mediates HG-induced [48] and cardiomyocyte
apoptosis [12]. Originally, PKC was found as a substrate of the
calpains family which can be cleaved and activated by calpains
activation [49,50].

Figure 1: Schematic representation of the risk factors for calpains
activation in the ECs. Ang II, angiotensin II; LDL, low density
lipoprotein; VEGF, vascular endothelial growth factor.

Recent studies suggested that calpains can also serve as a
downstream target of PKC signaling [51]. PKC inhibitor BIM-1
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decreases calpains activity in mouse microvascular endothelial cells
under hyperglycemia condition [48]. Nevertheless, we recently showed
that both μ-calpain and PKCβ2 inhibition by pharmacological
inhibitors or gene silencing approaches rescued HHcy/hyperglycemia-
induced eNOS-pThr495 [15]. We demonstrated that HHcy
potentiated hyperglycemia-induced ED via µ-calpain/PKCβ2
activation-mediated eNOS-pThr49, eNOS inactivation and NO
reduction [15].

PGI2 is generated from arachidonic acid by cyclooxygenase (COX)
including COX-1 and COX-2. PGI2 mediates endothelium-dependent
vascular relaxation via PGI2 receptors (IP) and protects vessels from
the development of diseases [52]. Decreased production of PGI2 has
been suggested to cause an increased incidence of cardiovascular
events [53].

Figure 2: Schematic representation of the role and signaling
pathways of calpain activation in NO-mediated ED in diabetes.
eNOS, endothelial nitric oxide synthase; ECs, endothelial cells;
eNOS-pThr495/497, phosphorylation of eNOS at threonine
495/497; hsp90, ICAM-1, intercellular adhesion molecule 1; hsp90,
heat shock proteins 90; NO, nitric oxide; VCAM-1, vascular cell
adhesion molecule 1.

In diabetes, PGI2 may also act on thromboxane prostanoid receptor
(TP) on smooth muscle to mediate vasoconstriction and it functions as
an endothelium-dependent contracting factor [54]. COX-2 has been
commonly considered a major source of endothelial PGI2 synthesis
[53]. The role of calpain on the regulation of COX-2 in diabetes
remains unclear. Calpain/cathepsin protease inhibitors suppressed
cleavage of COX-2 in human synovial fibroblasts [55]. Calpain
inhibitor PD150606 dose-dependently increased lipopolysaccharide-
induced COX-2 in murine aortic endothelial cells (MAEC), which was
dose-dependently degraded by porcine µ-calpain [56].

Moreover, titanium particles stimulate COX-2 expression in
fibroblasts via calpain-induced degradation of IκB and activation of
NF-κB [57]. Thus, studies on the role of calpain activation on the
impairment of PGI2-mediated endothelium-dependent vascular
relaxation in diabetes are needed.

Cumulative evidence is mounting that EDHF is a major
determinant of vascular tone in small resistance vessels. In spite of
numerous studies, the nature of EDHF is still not entirely elucidated.

The endothelium-mediated relaxation, which is resistant to eNOS and
COX inhibition, is thought to be mediated by EDHF. Current evidence
suggests that EDHF-mediated responses are initiated by activation of
endothelial K+ channels (Kca), thus posttranscriptional modification
of KCa is suggested to be involved in EDHF-mediated ED under
certain disease conditions [6,36,58]. We have found that EDHF-
mediated endothelium-dependent vascular relaxation was impaired in
the mesenteric artery of diabetic Goto-Kakizaki rats and this relaxation
was aggravated by high-salt diet [59]. Moreover, we reported that
HHcy impaired EDHF-mediated ED in mouse small mesenteric artery
by oxidation and tyrosine-nitration of small and intermediate
conductance Kca [36]. Role of calpain on the regulation of Kca in ECs
has not been studied under diabetic condition yet. A recent study
showed that over expression of endogenous calpain inhibitor
calpastatin improved EDHF-mediated ED in the aorta of
streptozotocin (STZ)-treated mice, suggesting that activation of
calpain may also trigger ED in diabetes via regulation of EDHF.
Further studies on the effects of calpain activation on the regulation of
EDHF-mediated endothelial dysfunction in diabetes are warranted.

Conclusions
Our study and data from other laboratories support the concept

that activation of calpains, especially activation of µ-calpain, is causally
linked to NO-mediated ED in diabetes. Activation of µ-calpain
decreases NO bioavailability by decreasing the interaction between
hsp90 and eNOS, increasing eNOS degradation and eNOS-pThr495
(Figure 2). Inhibition of calpains rescued hyperglycemia-induced NO-
mediated ED and inflammatory responses in micro- and macro-
vasculature. We demonstrate that HHcy potentiates μ-calpain
activation thus aggravating ED in diabetes. Given the very recent study
reporting that overexpression of calpastatin improved EDHF-
mediated ED in the aorta of mice with hyperglycemia [41]. Studies are
warranted elucidating this therapeutically useful pathway because the
role of activation of calpains on PGI2 and EDHF in diabetes remains
unclear.
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