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Abstract
Malaria is a major health problem and Plasmodium falciparum strain resistance to existing antimalarials drugs 

made the current approach inadequate for treatment of malaria. Drug development directed against malaria is generally 
targeting blood schizonts. However, to prevent relapse, tissue schizontocides are recommended to clean residual 
infection in the tissues. In spite of the available drugs, malarial chemotherapy is still insufficient and therefore new 
strategies are being explored to fill the gaps. The new approaches are being used to generate new compounds as well 
as combinations of drugs for development of effective and safe antimalarial therapy. This review discusses the recent 
developments in 4-aminoquinoline derived new analogs and insight into design and development of new antimalarials.
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Introduction
Malaria remains as one of the most devastating diseases of the 

developing world concentrated mainly in tropical regions. Despite 
the huge advances in our understanding of the disease, it continues to 
be one of the greatest causes of serious illness and death in the world. 
Approximately 156 species of plasmodium infect various vertebrates, 
but only four; P. falciparum, P. malariae, P. vivax and P. ovale are known 
to infect humans. Among these, P. falciparum is the cause of most severe 
and life threatening malaria in human beings. Endemic maps indicate 
that P. falciparum and P. vivax account for 95% of malarial infections 
[1-4]. P. falciparum is found throughout tropical Africa, Asia and 
Latin America while P. vivax is found worldwide in tropical and some 
temperate zones [5,6]. P. falciparum is remarkable for its high case of fatality 
rate causing 2-3 million deaths worldwide, particularly children, and a 
further 300-500 million cases occur each year [7]. Malaria is transmitted by 
the bite of an infected anopheles mosquito and is characterized by periodic 
chills, high fever, nausea, and vomiting. The role played by the host immune 
system in resistance and healing of the disease is well established, however 
the strategies involving the development of vaccine against malaria is 
inadequate [8]. Currently chemotherapy of malaria depends on several 
drugs, yet proper treatment is not in sight. Even though the available drugs 
have the ability to cure malaria infection and control the spread. There are 
several limitations which includes left over infection leading to relapse, 
toxicity to the host and development of resistance.

Resistance of plasmodia to antimalarial drugs is now recognized as one 
of the major problems in the treatment of malaria. This rapidly increasing 
resistance of P. falciparum malaria parasites to most commonly used drugs 
such as quinine, chloroquine (CQ), proguanil and pyrimethamine has 
made the chemotherapy ineffective. Moreover, new and more expensive 
chemotherapeutic agents, such as mefloquine and halofantrine are also 

showing resistance. Alternative strategies to control malaria infection 
include vector control and development of vaccines, remain inadequate 
[8]. Therefore, to meet the new challenges development of novel 
molecules with better therapeutic potential and safety is a very high 
priority task. So far, malaria control has relied largely on a small number 
of chemically related drugs, belonging to three classes of compounds: 
Quinoline and its related analogs (quinine, CQ, amodiaquine, 
primaquine mefloquine, and halofantrine), the artemisinin and 
its derivatives (artemisinin, artesunate, artemether, arteether, 
dihydroartemisinin), the antifolate compounds (pyrimethamine, 
proguanil, chlorcycloguanil, dapsone, and sulfadoxine), and most 
recently, the hydroxynapthoquinone atovaquone (Figure 1) [9,10].

Challenges in Drug Development
The success of malaria chemotherapy depends on thorough 

understanding of the interaction among the three major components, 
namely human host, antimalarial drugs and malaria parasite (Figure 2). 
The challenge in antimalarial drug development arises in consideration 
of malaria life cycle. This contains two hosts (Human host and 
Mosquitoes) and five main stages in life cycle. Once the human host is 

N

HN
N

R

Cl

n
Heme binding template 

7Cl: Essential for high affinity 
binding to hematin. 

Linker: alkyl, aryl, 
ferrocenyl 

For Lipophilicity 
Reduction from 
4-C atoms to 2-C or 3- C atoms 
increases
activity versus CQR strains

Terminal 3
0
 Amino Group - Important for

Accumulation 

Med
icinal chemistry

ISSN: 2161-0444

Medicinal chemistry



Citation: Shreekant D, Bhimanna K (2016) 4-aminoquinolines: An Overview of Antimalarial Chemotherapy. Med chem 6: 001-011. doi:10.4172/2161-
0444.1000315

Med chem
ISSN: 2161-0444 Med chem, an open access journal

Volume 6(1): 001-011 (2016) - 2 

N

H3CO

OH
N

Qunine

NCl

HN
N

Chloroquine

NCl

HN

OH

N

Amodiaquine

N

N
H

HO

CF3
CF3

F3C

Cl Cl

N
C4H9

C4H9
3

N
HN

H3CO

NH2

Mefloquine Halofantrine Primaquine

O

O

H

O
O

OR

H

Quinoline and its related antimalarials

R= H                       Dihydroartemisinin
R=Me                      Artemether
R=Et                      Arteether
R=CO(CH2)CO2H Artesunate

Artemisinin antimalarials Other antimalarials

N

N

NH2

H2N

Cl O

O
OH

Cl

Cl NH
NH

NH
NH

HN

N
N

H3CO

H3CO

HN SO2

NH2

Proguanil Sulphadoxine

AtovaquonePyrimethamine

Figure 1: Chemical structures of important antimalarial drugs in clinical use.

 

Figure 2: Interactions among the three components of malaria chemotherapy 
(human host, malaria parasite, antimalarial drug).

 

Figure 3: Life cycle of malaria parasite Plasmodium falciparum.
infected, malaria parasite induces ‘pathological condition’. It is a disease 
caused by multiplication of parasites in repeated cycles of growth of the 
parasite Plasmodium in the erythrocyte. Immune response induces the 
protective mechanism in the host is in response to parasitic invasion. 
Malaria symptoms can develop as soon as 6–8 days after being bitten 
by an infected Anopheles mosquito, or as late as several months 
after departure from a malaria endemic area. The effectiveness of an 
antimalarial drug depends, principally on the interactions between 
antimalarial drug and malaria parasite, i.e., ‘selective toxicity’ and ‘drug 
resistance’, and between antimalarial drug and host, the compatibility 
i.e., ‘pharmacokinetics’ and ‘pharmacodynamics’. The ideal 
antimalarials are drugs which are selective and show curative activity 
without or minimal toxicity to the host [11,12]. The development of 

new antimalarials requires prior knowledge of life cycle of the parasite 
and drug action of existing chemotherapy.

Malaria Life Cycle
The life cycle of plasmodia has five stages that include both sexual 

and asexual mode of reproduction in two hosts, namely a mosquito 
and a human (Figure 3). During a blood meal, a malaria-infected 
female Anopheles mosquito injects sporozoites into the human host. 
These sporozoites then migrate to the liver where they transform, 
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multiply, and mature into tissue schizonts, which eventually rupture, 
releasing merozoites into the blood stream. To avoid the host’s immune 
system, they invade erythrocytes. After the initial replication in the 
liver, the parasites undergo asexual multiplication in the erythrocytes 
(erythrocytic stage). In every cycle, schizonts get ruptured with 
erythrocytes and releases new merozoites into the blood stream, which 
in turn again invade the new erythrocytes. Before this stage the infected 
individual may not have any symptoms, once RBCs get ruptured, the 
host immune system get exposed to parasite factors in turn stimulates 
to release cytokines and results in the symptoms like fever and chills.

In case of P. vivax and P. ovale, a dormant, hypnozoite stage remains 
in the liver and causes relapses by invading the bloodstream, weeks 
to years later. After a number of asexual life cycles, Some merozoites 
develop into sexual erythrocytic forms (gametocytes). When an 
Anopheles mosquito ingests male and female gametocytes during a 
blood meal from an infected host, fertilization takes place in the gut 
of the mosquito forming zygotes. The zygotes become elongated and 
invade the gut wall of the mosquito developing into oocysts. These 
oocysts grow, rupture, and release sporozoites. These invade the 
mosquito's salivary gland, and the mosquito is then ready to transmit 
the disease during the next blood meal [13-15].

Antimalarial agents are classified by the stages of the malaria life 
cycle that are targeted by the drug. Blood schizonticides acting on the 
asexual intraerythrocytic stages of the parasites. Tissue schizonticides 
kill hepatic schizonts, and thus prevent the invasion of erythrocytes, 
acting in a causally prophylactic manner. Hypnozoiticides kill persistent 
intrahepatic stages of P. vivax and P. ovale, thus preventing relapses 
from these dormant stages. Gametocytocides destroy intraerythrocytic 
sexual forms of the parasites and prevent transmission from human to 
mosquito. As there are no dormant liver stages in P. falciparum malaria 
(malaria tropica), blood schizonticidal drugs are sufficient to cure the 
infection. In cases of P. vivax and P. ovale, a combination of blood 
schizonticides and tissue schizonticides is required [5,6].

Chemotherapeutic Approaches
Drug development directed against malaria is generally targeting 

blood schizonts. However, to prevent relapse tissue schizontocides are 
recommended to clean residual infection in the tissues. In spite of the 
available drugs, malarial chemotherapy is still inadequate and therefore 
new strategies are being explored to fill the gaps. The new approaches 
are being used to generate new compounds as well as combinations of 
drugs for development of effective and safe antimalarial therapy. This 
review discusses the recent developments in new analogs of existing 
drugs, especially 4-aminoquinoline derived antimalarials.

Combination therapy

Owing to rapid spreading of disease as well as emergence of resistance 
new strategies are being explored. Among various such approaches 
combination therapy offers several advantages. The combination therapy 
has also been recommended by World Health Organization (WHO) for 
the effective treatment of malaria. As information on pharmacokinetics 
of antimalarials have become increasingly available, it is appropriate 
to reexamine current recommendations for effective treatment and 
prophylaxis. In addition, antimalarial formulations and dosage forms 
can be improved [16]. This approach is to optimize therapy with existing 
agents. New dosing regimens or formulations may optimize activity. 
Combination therapies, including newer agents (e.g., artemisinin 
derivatives, atovaquone) and new combinations of older agents (e.g., 
amodiaquine/sulfadoxine/pyrimethamine, chlorproguanil/dapsone), 
are under study as first-line therapies for Africa and other tropical 
areas with widespread drug resistance [17,18]. The use of combination 

antimalarial therapy offers two important potential advantages. First, 
the combination improves the antimalarial efficacy with additive 
or, preferably, synergistic effect. In the case of both the artemisinin 
derivatives and atovaquone, the new agents have had unacceptable 
failure rates when used as single agents to treat falciparum malaria but 
they have been highly effective in combination with other established 
antimalarials. Second, and probably most important in the use of 
combination therapy is slow down the progression of parasite resistance 
to the new agents. This latter factor is a key consideration as we attempt 
to develop new therapies that will retain activity for a long period. 
Ideally, a combination regimen that prevents resistance development 
should include at least two agents against which parasite resistance has 
not yet developed and which have similar pharmacokinetics, so that low 
blood levels of a single agent will not be present. No such ideal regimen 
is currently available, although chlorproguanil/dapsone/artesunate 
may prove to fit this description. Alternatively, the combination of a 
short-acting, highly potent compound and a longer-acting agent may 
prove effective, if the initial decrease in parasite burden is so great as to 
limit subsequent resistance development to the long-acting agent (e.g., 
artesunate/mefloquine) [19].

New analogs of existing drugs

Improving upon the antimalarial chemotherapy profile of existing 
compounds by chemical modifications has been a rewarding approach. 
This approach does not require development of knowledge of the 
mechanism of action or the therapeutic target of the agents that used 
for combination therapy. Indeed, this approach was responsible for 
optimizing the activity and selectivity of existing antimalarials even 
against resistant strains. For example, CQ, primaquine and mefloquine 
were discovered through chemical strategies to improve upon quinine 
[20]. More recently, 4-aminoquinoline derivatives that are closely 
related to CQ appear to offer the great potency even against CQ-
resistant strains of parasites [21,22]. A related compound, pyronaridine 
(Figure 4), was developed in China and is now undergoing extensive 
clinical trials in other areas [23]. An 8-aminoquinoline derivative, 
tafenoquine (Figure 4), offers improved activity against hepatic-stage 
parasites over that of the parent compound, primaquine [24], and is 
effective for antimalarial chemoprophylaxis [25]. Since halofantrine 
use is limited by toxicity, the analog lumefantrine was developed and is 
now a component of the new combination co-artemether (artemether/
lumefantrine) [26]. New folate antagonists [27] and new endoperoxides 
related to artemisinin [28,29] are also under study.

Development of Aminoquinolines Derived 
Antimalarials

4-Aminoquinolines derivatives were the first class of compounds 
used for the successful treatment of malaria and drugs of choice for 
the present time also. In the 18th century, the first attempt of successful 
treatment of malaria was made with use of the bark of cinchona trees 
[30]. Gomes et al. in 1810 extracted the cinchona bark but after a decade, 
active ingredient of quinine (Figure 5) was isolated and made Malaria 
as first disease for which a pure compound was used for the treatment 
[31]. The structure elucidation and different synthetic routes have come 
up in near 19th century. In 1856, chemist William Henry Perkins set out 
to synthesize quinine. His efforts resulted not in quinine (the first total 
synthesis was accomplished later in 1944), but rather in the first synthetic 
textile dye called “mauve”. Paul Ehrlich noticed that methylene blue (1) 
was particularly effective in staining malaria parasites (Figure 5). He 
rationalized that this dye might also be selectively toxic to the parasite 
[30]. In 1891, Ehrlich and Guttmann cured two malaria patients with 
methylene blue (1), which became the first synthetic drug ever used in 
therapy. Although it was not used further at that time, methylene blue 
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constituted the basis for the development of synthetic antimalarials. In 
the 1920s, chemists at Bayer in Germany started to modify the structure 
of methylene blue (1). A key modification was the replacement of one 
methyl by a dialkylaminoalkyl side chain to give compound 2.

Subsequently, this side chain was connected with different 
heterocyclic systems such as the quinoline system, yielding the first 
synthetic antimalarial drug, plasmochin (3, also known as plasmoquine 
or pamaquine) in the year 1925. However, under clinical evaluation, this 
drug displayed multiple side effects, and was therefore not widely used. 
The congeneric primaquine (4), introduced in 1952, was better tolerated, 
making it the main representative of the class of 8-aminoquinoline 
derived anti-malarials. Connection of the diethylaminoisopentylamino 
side chain with an acridine heterocycle yielded mepacrine (5, also 
known as quinacrine), which was introduced in 1932 for prophylaxis 
and treatment of malaria [30-33].

A major success with the drug-design strategy was achieved in 
1934 with the introduction of a diethylaminoisopentylamino side chain 
into position 4 of a 7- chloroquinoline, yielding a compound named 
resochin by the German inventors (later known as chloroquine (6). 
However, after initial trials, resochin was regarded as too toxic for use 
in humans and ignored for a decade. In 1936, the structurally closely 
related sontoquin (7, later known as nivaquine) was prepared in the 
Bayer laboratories and tested in Germany. Resochin (CQ) was re-

evaluated in 1943 and was found safe for human subjects. After the 
World War II, CQ became the foundation of malaria therapy for at least 
four decades [30-33] and most successful drug in clinical use till date 
[34-36].

Mode of action of 4-aminoquinoline derivatives
Mode of action of 4-aminoquinoline classes of compounds is still a 

matter of debate despite the overwhelming importance. Various theories 
have been proposed and reviewed [1,37-39]. The consensus points out 
that CQ interacts with the parasite’s ability to digest haemoglobin. 
During its erythrocytic stages, the parasite consumes large quantities 
of haemoglobin from its host cell, either for the purpose of amino acid 
supply, or simply to create space inside the erythrocyte. Haemoglobin 
is shuttled by vesicles to a specialized organelle called digestive vacuole 
(DV). A number of facts relating to the drugs action are now widely 
accepted. Based on these facts several hypotheses have been raised.

Early biochemical studies demonstrated that CQ was able to inhibit 
DNA and RNA synthesis [40-42]. However, interaction of CQ with 
DNA does not explain the antimalarial activity and the selective toxicity 
of this compound. Some other mechanisms have been proposed, but 
they would call for higher drug concentrations than what can be 
achievable in vivo and not generally regarded as convincing options 
[1]. These include inhibition of protein synthesis; inhibition of digestive 
vacuole (DV) lipase, and aspartic protease [1,37-39].

A clue to the mechanism of action of CQ came from the observation 
that it is active only against the erythrocytic stages of malaria parasites. 
The next phase of research concentrated on the feeding process of the 
parasites, where CQ could able to inhibit the haemoglobin degradation. 

Uptake of haemoglobin and its metabolism by a series of proteases 
in food vacuole of the parasite strengthen the hypothesis [43-45]. 
Thus, the 4-aminoquinoline derived drugs have been proposed that 
selectively target the haemoglobin degradation which is a specific to 
parasites [46]. The free heme, which is toxic to parasite, released from 
the haemoglobin degradation and a series of proteases involved were 
drawn more attention of the researchers (Figure 6) [47-49].

The plasmodial enzymes involved in digestion of haemoglobin 
have attracted much attention as possible targets for antimalarial drug 
design. When hemereleased from haemoglobin get converted into 
ferric form, which is highly toxic to vacuolar proteases and damaging to 
parasite membranes. Interestingly, parasite has a unique non-enzymatic 
heme detoxification mechanism, in which heme released from parasite 
digestion is converted to an insoluble polymer, called hemozoin. It is 
microscopically visible in the DV as malaria pigments [50].
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4-Aminoquinoline derived drugs are known to inhibit the hematin 
formation by complexing with ferriprotoporphorin IX (FPIX) thereby 
prevents its polymerization into hemozoin, which results into parasite 
death. Crystallographic information of the structure of the CQ–FP 
complex is not available. Most NMR and molecular modeling studies 
[36,51] show a face-to- face π staggering of the porphyrin and quinoline 
systems, although a structure showing an edge-to-face complex with the 
ring nitrogen atom sitting above the ring iron center has also been reported 
[52]. Very recently, structure determination by NMR spectroscopy 
showed CQ sitting in a central position over the outermost porphyrin 
rings of a FPIX–CQ 4:2 complex [53]. Most researchers assume that the 
buildup of noncrystalline FPIX, either in its free form or as a FPIX–CQ 
complex, finally kills the parasite. The precise mechanism by which this 
toxic effect is exerted remains to be elucidated [35,54]. According to 
a recent theory, the FPIX–CQ complex acts on a yet to be undefined 
membrane target, thereby either impairing the membrane function 
directly, or triggering the release of Ca2+ ions, resulting in the premature 
fusion of the transport vesicles shuttling haemoglobin to the DV. In these 
prematurely fused vesicles, haemoglobin is no longer properly degraded 
[55]. This hypothesis is supported by an independently conducted study 
that demonstrated the inhibition of macromolecule endocytosis by more 
than 40% and the accumulation of transport vesicles in the parasite 
cytosol upon the addition of CQ to late ring-stage parasites.

Since FPIX is a potential target for 4-aminoquinolines and related 
antimalarials, a number of studies have investigated the nature of FP 
binding to 4-aminoquinolines. Structure of heme, hemozoin and their 
structural similarity with synthetic FPIX have been well documented 
(Figure 6). An important difference between monomeric heme 
(including heme aggregates) and hemozoin is their differential solubility 
in organic and aprotic solvents and in sodium dodecoyl sulphate (SDS) 
and mildly alkaline bicarbonate solutions. This property may be useful 
in specific estimation of hemozoin and β-hematin formation inhibition 
assay [47-49].

Considerable evidence has accumulated in recent years that 
antimalarial drugs such as CQ act by forming complexes with FP, 
the hydroxo or aqua complex of Ferriprotoporphyrin IX (Fe(III) FP), 
derived from parasite proteolysis of host haemoglobin. Studies by 
Dorn et al. confirmed that CQ forms a complex with the μ-oxo dimeric 
form of FP with a stoichometry of 1 CQ : 2 μ-oxo dimmers. They 
have supported the enzymatic mechanism of hemepolymerization in 
vivo [56-60]. Considerable data supports the hypothesis that hematin 
is the target of 4-aminoquinoline class of compounds [61]. 4-AQ are 
weak bases and are expected to accumulate in an acidic food vacuole 
to many folds. Recently Egan et al. have shown that CQ, amodiaquine 
and quinine can inhibit synthetic β-hematin formation by direct 
interaction [62]. As discussed earlier, UV, NMR, mass, crystallography 
and molecular modeling studies also support the complex formation 
[36,51]. The isothermal titration calorimeter (ITC) is also used to 
explain the mechanism.

Mechanisms of resistance

The indiscriminate use of CQ has led to the development of 
resistant malaria strains. They are almost spread over the entire 
malaria-endangered area. Today, more than 80% of wild isolates are 
resistant to CQ [55]. The need to understand the mechanisms of action 
of the 4-AQ antimalarials is urgent as levels of resistance to these drugs 
is on increase. This information is also highly useful for the design and 
development of drugs against CQ-resistant strain of malaria. Resistance 
to CQ is more likely to involve more than one gene and altered drug 
transport rather than changes at site of drug action.

In CQ-resistant strains, the drug is apparently removed from 
its putative locus of action, the digestive food vacuole (Figure 7). 
The main cause of CQ resistance is a matter of intense research and 
debate. Mutation in the transporter gene ‘pfcrt’ is the main culprit in 
which codes for a protein called the chloroquine resistance transporter 
(PfCRT). Because there is not much else of significance inside the DV 
worthy transport, it has been proposed that the physiological role of 
this protein is the transport of amino acids or small peptides resulting 
from the degradation of haemoglobin into the cytoplasm [63]. All CQ-
resistant strains have a threonine residue in place of lysine at position 
76 of the protein. In wild-type CRT, this positively charged side chain is 
thought to prevent access of the dicationic form of CQ to the substrate 
binding area of the transporter. The K76T mutation replaces the 
positively charged side chain by a neutral moiety, and thereby allows 
access of the CQ di-cation to the transporter, which then decreases the 
concentration of CQ in the DV considerably (Figure 7).

The K76T mutation is accompanied by up to 14 more amino acid 
replacements, which are thought to restore the physiological function 
of the transporter, as, an engineered strain carrying only the K76T 
mutation is not viable [64-66]. Interestingly, a CQ-resistant strain kept 
under continuous drug pressure with halofantrine (Figure 1) shows 
a S163R mutation that renders this strain halofantrine resistant but 
restores susceptibility to CQ, most probably through re-emergence of 
the cation-repelling positive charge in the substrate binding area of the 
transporter [64,67]. This is in agreement with the fact that CQ resistance 
can be reversed in vitro by several compounds of which verapamil (8) 
is the prototype (Figure 8). The common molecular feature of these 
so-called CQ resistance reversers are two lipophilic aromatic residues 
and a basic aminoalkyl side chain. It is believed that the aryl residues 
interact with a lipophilic pocket in the substrate binding site of the 
CRT, while the protonated amino group restores the positive charge 
that repels the CQ di-cation. The underlying molecular scaffold for CQ 
resistance reversers, resembles a variety of molecules including certain 
H1-antihistaminic agents (chlorpheniramine 9) and neuroleptics [68-
71]. Recent results suggest that this mutation plays a compensateory 
role in CQ-resistant isolates under CQ pressure and may also have some 
fine tuning effects on the degree of CQ resistance. Efforts to design 
new reversers of CQ resistance are underway [61]. Thus, although CQ 
appears to already have failed as a first-line antimalarial in most of the 
world, this inexpensive, rapid acting, well-tolerated antimalarial may be 
resurrected by combination with effective resistance reversers.

An explanation of CQ resistance, focuses on the enzyme 
glutathione reductase (GR), which might be another target of the CQ–
FPIX complex [35]. Considerably elevated glutathione levels are found 

 

Figure 7: Representation of PfCRT gene mutation a) The positively charged 
side chain of K76 of the wild-type PfCRT repels the chloroquine dication. b) 
The K76T mutation removes a positively charged side chain from the CQ 
resistance transporter. c) CQ resistance.
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in CQ- resistant strains, leading to the theory that a combination of 
CQ with a glutathione reductase inhibitor might overcome resistance. 
A dual drug consisting of a quinoline derivative [62] and a GR inhibitor 
(10) showed activity against various CQ-resistant strains that was 
superior to the parent quinoline, but failed to produce a radical cure 
in P. berghei-infected mice [72]. The presumed role of glutathione in 
CQ resistance could also be the rationale behind the recently renewed 
interest in methylene blue (1), which is known to inhibit GR [73].

However, very recent results showed that methylene blue and CQ 
are antagonistic in vitro [74]. In light of these results; it is not surprising 
that a clinical trial showed no advantage in using a combination of 
methylene blue and CQ over CQ monotherapy in an area with a high 
probability of CQ resistance.

Modifications of 4-aminoquinoline derived scaffold

4-aminoquinoline derived antimalarial constitute in major class 
of available antimalarial drugs broadly in clinical use. Much work has 
been invested in the structural modification on the 4-aminoquinoline 
scaffold, resulting in a large number of derivatives. Excellent reviews 
have described these efforts in depth. Three different structural 
modifications are able to overcome CQ resistance (Figure 9): 1) The 
elongation, or more important, the shortening of the diaminoalkyl side 
chain; 2) The introduction of lipophilic aromatic moieties into the side 
chain; and 3) The dimerization of two 4-aminoquinolines by a linker of 
variable nature and length. Figure 9 depicts the side chain modification 
on the 4-AQ and relative structure activity relationship.

For the sake of clarity, the discussion is organized as following 
sub headings (a) modification on 4-aminoquinoline-nucleus (b) 
modification on side chain analogs (c) modification on side chain 
dialkylaminomethyl-phenol and d) Bisquinoline analogs.

Modifications on 4-aminoquinoline nucleus 

The core nucleus, 4-aminoquinoline is an essential for antimalarial 
activity and several attempts have been made on modifying the side 
chain on the quinoline ring. The reason being that intact 4-AQ is 
required in hematin binding and for antimalarial activity [75]. Several 
studies report, the modification on the 4-AQ nucleus leads to loss of 
activity with the exceptions of chloroquine-N-oxide [76]. In literature it 
is evident that 7-halo substituted 4-aminoquinoline derivatives are more 
active than unsubstituted analogs [77]. Further Vippagunta et al. and 
other groups suggested that 7-chloro-4-aminoquinoline is essential for 
inhibition of β-hematin formation and optimal for antimalarial activity 
[75]. This evidence is further supported by Egan et al. for obligatory 
nucleus in the inhibition of β- hematin formation. Other electron 
donor groups like NH2 or OCH3 in the place of 7-chloro group reduces 
the hematin association constant and weakens inhibition of β- hematin 
formation, thus finally reduces the antimalarial activity. Whereas 
electron withdrawing group like NO2 reduces the accumulation in 
the DV and show weaker inhibition of β- hematin formation and 
antimalarial activity.
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Figure 9: Structural requirements of 4-AQs for antimalarial activity.
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Side chain modifications

The diaminoalkyl side chain of 4-AQ derived antimalarials plays 
significant role in modulation of the activity. It is considered that, side 
chain would provide and modulate the required pharmacokinetic 
properties for drug transport as well as basicity for accumulation in the 
DV. Thus several reports depict the alteration, or more importantly the 
shortening, of the dialkyl side chain for the activity against CQ resistant 
strains [77,78]. A CQ derivative with a shortened side chain is AQ13 
(Figures 10 and 11). It retains activity against CQ-resistant parasites 
(IC50=59 nm versus 315 nm for CQ), but there is a clear correlation 
between the susceptibility of different isolates toward AQ13 (11) and 
CQ, pointing to some degree of cross-resistance. A recently completed 
dose-dependent trial in healthy volunteers suggests that the adverse 
effects of AQ13 may not be different from those of CQ and that higher 
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These hits need to pass through pharmacology and toxicology filters to 
find the most promising candidates. In the same line various analogs 
(12) of AQ13 with potent antimalarial activities have been developed. 
Extensive investigations were done by several research groups on the 
modification of side chain to determine the appropriate length and size. 
Stock et al. showed that the replacement of the diethylamino function 
with a metabolically stable tBu group (F2bu; 13) led to a 20-fold increase 
in the potency against the CQR strain [80]. Iwaniuk et al. introduced a 
linear dibasic side chain (14) with good improvement in the activity 
[81].

Sergherart et al. have synthesized a series of 4-aminoquinoline 
based sulfonamide library bearing a common piperazine linker. The 
most effective analog (Figures 10 and 15) shows that 100 fold better 
activity than CQ [82]. Further, in one more study, they have synthesized 
N1(7-chloro-4-quinyl)-1,4-bis(3-aminopropyl) piperazine derivatives 
and screened them against CQ resistant strain of P. falciparum. All 
these compounds showed higher selectivity index than CQ and one 
of the compounds (X=CO) (16) showed 5-fold higher selectivity 
index and was 5 fold more active than CQ [83]. In another series, 
eleven compounds displayed higher selectivity index than CQ, among 
these one of the compounds (17) cured mice infected by P. berghei 
[84]. Musonda et al. have reported a new series of 4-aminoquinoline 
derivatives from Ugi reaction and found these analogs were active 
against both CQ resistant and sensitive strains of P. falciparum, with the 
best compound (18) showing an IC50 value of 73 nM against a resistant 
strain [85]. Pyrrolizidinyl moiety at the pendent nitrogen (19) was 
recently reported by Sparatore et al. has showed a promising antimalarial 
activity for further development. There are different research groups 
have reported potent antimalarial activity by introducing a aromatic 
group (20) in the side chain as well as lengthening the diaminoalkyl 
side chain of 4-aminoquinoliners (21).

Manohar et al. reported class of hydrib molecules of 
4-aminoquinolines and pyrimidine (Figure 11); 22-39) as antimalarials. 
All compounds were screened for in vitro antimalarial activity against 
chloroquine (CQ)-sensitive (D6) and chloroquine (CQ)-resistant (W2) 
strains of Plasmodium falciparum [86].

Out of the derivatives synthesized, 11 compounds (26, 27, 30, 31, 
and 33-39) have showed better antimalarial activity (IC50=0.005−0.03 
μM) against the CQ sensitive strain. 12 compounds (27-31, and 
33-39) displayed better antimalarial activity (IC50=0.01−0.21 μM) 
against the CQ-resistant strains of P. falciparum. Generally hydrib 
derivatives showed roughly 1.6-2.0 fold increase in activity compared to 
pyrimethamine in case of drug resistant strains. Most active compounds 
found to be 34 and 38.

Bhat et al. reported series of hybrid 4-aminoquinolines-1,3,5-
triazines (Figure 12); 40-46) and screened against chloroquine 
sensitive RKL2 strain of Plasmodium falciparum in 96 well-microtitre 
plates. However, synthesized derivatives exhibited mild to moderate 
antimalarial activity with no toxicity signs [87].

Kumar et al. reported the modified 4-aminoquinoline derivatives–
acridine hybrids (Figure 13); 47-64) as potential compounds to 
overcome the resistance of Plasmodium falciparum to aminoquinoline 
and related antimalarial drugs. All the synthesized derivatives were 
evaluated for antimalarial activity against NF 54 strain of P. falciparum 
[88]. Compounds 47 and 48 with ethyl and propyl chain exhibited MIC 
value of 10 lg/mL. Further, methyl group on phenyl derivatives lead 
to corresponding compounds 49 and 50 with no antimalarial activity. 
Derivative 51 with ethyl linker attached to the 1-pyridin-2-yl piperazine 
had MIC of 10 lg/mL, however 52 propyl linker resulted in remarkable 
improvement in antimalarial potency with MIC value of 0.125 lg/mL. 
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doses of AQ13 over CQ may be necessary to produce similar blood levels 
and AUC values [79]. Several options have come up with AQ13 success 
and variation have been made on the lateral amino group of the AQ13. 
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Compound 55 with ethyl linker attached to the tetrahydroisoquinoline 
exhibited MIC value of 2 lg/mL and replacement with propyl linker (56) 
led the excellent antimalarial potency with MIC value of 0.031 lg/mL. 
Compound 57 with ethyl linker attached to the 4-phenyl-piperidine-
4-carbonitrile showed MIC value of 10 lg/mL, while addition of one 
methylene unit resulted in compound 58 with excellent activity. Data 
analysis revealed that propyl linker was favorable for the antimalarial 
activity. All other derivatives were showed moderate antimalarial 
activity.

Modifications on AQ side chain of dialkylaminomethyl-
phenol

Enhancement of lipophilicity of the side chain by the incorporation 
of an aromatic structure resulted in amodiaquine (AQ) (Figure 14); 
65) with certain degree of cross resistance to CQ activity. However, 
the therapeutic value of amodiaquine is significantly decreased by the 
biotransformation of its p-aminophenol moiety into a quinonimine 
(66), a severe hepatotoxic intermediate by complexing (nucleophilic 
attack by thiol groups) with proteins. Moreover, amodiaquine-
protein complexes (67) are highly immunogenic, leading to life-
threatening agranulocytosis. To overcome these adverse effects, several 
anilinoquinolines have been developed to prevent the undesirable 
formation of toxic quinonimines and improved antimalarial activity. One 
of the modifications is the exchange of the positions of the hydroxy and 
diethylaminomethyl groups on the phenyl ring. The resulting isoquine 
(69) is not bioactivated and therefore does not lead to hepatotoxicity 
[85] with significantly improved activity against CQ-resistant strains. 
Furthermore, to improve upon the rapid biotransformation by 
oxidative dealkylation in the body, tert-butylamino group is replaced 
the diethylamino moiety, resulting tert-butylisoquine (70). It promises 
a new generation of affordable, well tolerated and effective antimalarial 
agents that is devoid of any cross-resistance to the chemically related 
CQ and amodiaquine.

Sergherart et al. have synthesized a series of 4-anilinoquinolines 
(Figure 15); 71-73) with two proton accepting side chains of varying 
length, which help these dicationic moieties in their likely interaction 
with carboxylate groups of haem. From this study, they concluded that 
structural features of 4-anilinoquinoline, can help in circumventing 
cross resistance with CQ [62]. In continuation as mentioned earlier, they 
have synthesized prodrug of 4-anilinoquinolines derivatives (Figures 8 
and 10) in which metabolically labile ester linkage of GR inhibitor was 
combined to amino and hydroxy functionality of amodiaquine [72].

Bisquinoline analogs

Bisquinolines were introduced to overcome CQ-resistance by 
connecting two 4-aminoquinoline moieties through linkers of various 
length and chemical nature. The activity of such bisquinolines against 
CQ-resistant strains has been explained by their steric bulk, which 
prevents them from fitting into the substrate binding site of PfCRT. 
Alternatively, the bisquinolines may be more efficiently trapped in 
the acidic DV because of their four positive charges. On this basis 
bulky bisquinoline compounds were synthesized and evaluated for 
their antimalarial activity. The most advanced representative of the 
bisquinolines, piperaquine (Figure 16); 74) was developed in 1960s 
and heavily used in China. Widespread resistance has developed in 
areas where piperaquine has been extensively used. However there are 
indications of cross-resistance with dihydroartemisinin (Figure 1). This 
significant finding made to develop the combination of piperaquine 
and dihydroartemisinin (named Euartekin) and entered phase II 
clinical trails [89]. Of the several bisquinoline analogs developed, the 
compound (WR 268,268) (Figure 16); 75) has shown potent in vivo 

activity against P. berghei [90]. For this reason, compound 75 underwent 
preclinical studies at Hoffmaan-LaRoche Ltd, and was found to be 
a good inhibitor of hematin polymerization, but its phototoxicity 
precluded its further development. tris- and tetraquinolines (Figure 
16); 76, 77) also developed by attaching 4-amino gruop to tri- and 
tetramacrocycles (cyclams) ring system. However, these derivatives are 
extruded with difficulty by proteinaceous transporter with the aim of 
reducing CQ resistance. The results suggest that increased rigidity by 
cyclization, yields molecules that were not more active in CQ sensitive 
strains but very potent against resistant strains and were also non-toxic 
[91].

Compounds Active against Other Diseases 
A third approach to antimalarial chemotherapy is to identify 

agents that are developed or marketed as treatments for other diseases. 
These compounds might act against orthologs of their targets in other 
systems or by different mechanisms against malaria parasites. This 
strategy further named as ‘piggy back’ approach which is cost effective 
when a molecular target present in parasites is being pursued for other 
(commercial) indications as it indicates the identification of chemical 
starting points. The advantage of these compounds is that, whatever is 
the mechanism of action, they have already been developed for a human 
indication, so will be quite inexpensive to develop as antimalarials. 
Specific examples of this approach include the antimalarial screening of 
lead series of Histone-deacetylase inhibitors [92], which were originally 
developed for cancer chemotherapy, and cysteine protease inhibitors 
that are being developed for osteoporosis. It should be noted that 
structure– activity relationships emerging from the parasite assays are 
unlikely to be the same as those observed for the original indication. 
It is therefore likely, that optimized clinical candidates emerging from 
this strategy will be disease-specific. In many cases, however, drugs may 
be quite inexpensive to produce and may be available as inexpensive 
antimalarials, especially after patents have expired, as has been the 
case with some antibiotics. Folate antagonists, tetracyclines and other 
antibiotics were developed for their antibacterial properties and were 
later found to be active against malaria parasites [93]. Iron chelators, 
which are used to treat iron overload syndromes, have documented 
antimalarial efficacy [94]. These examples suggest that it is appropriate 
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to screen new antimicrobial agents and other available compounds as 
antimalarial drugs. This approach is facilitated by the presence of high-
throughput assays for potential antimalarials. In the case of protein 
farnesyltransferases, development efforts have been led to viable 
anticancer therapies, however expedited the consideration of these 
targets for antimalarial chemotherapy [95].

 Conclusion
It is apparent from the forgoing discussion that 4-aminoquinoline 

continues to occupy center stage in search of a new viable alternative to 
CQ for successfully controlling malaria. The 7-chloro-4-aminoquinoline 
structural requirements for antimalarial activity are summarized below:

•	 The inter-nitrogen distance between the quinoline nitrogen 
(pKa1) and tertiary alkylamino nitrogen (pKa 2) plays an essential role 
in activity.

•	 Diprotonated forms are essential for pharmacological action.

•	 7-Chloro-4-aminoquinoline is required for inhibition of 
β-hematin formation.

•	  The role of carbon chain length in the aminoalkyl side chain 
by shortening (2-3 carbon atoms) and lengthening (10-12 carbon 
atoms) leads to improve the active against CQ-resistant strains of P. 
falciparum.

•	 Modification on pendant amino group leads to improved 
activity.

•	 Bisquinoline analogues are also active against CQ- resistant 
parasites in vivo.
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