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Editorial
Bone tissue engineering has emerged as an innovative and promising 

strategy for treating bone defects, in which a three-dimensional (3D) 
porous scaffold is loaded with tissue-inducing factors or specific cells to 
launch a tissue regeneration in a natural way [1,2]. A variety of materials, 
consisting of bimetallic materials, bioceramics, biopolymers or bio 
composites, have been proposed and used to fabricate scaffolds for bone 
tissue engineering over the last few decades, while the functions similar 
to natural bone remains a challenging task [3]. Architecture, mechanical 
property and osteogenic ability are considered as the most critical 
characteristics for an ideal scaffold [4]. Many bioceramic materials have 
high stiffness and bioactivity (i.e., their similarity to the mineral phase 
of natural bone) [5,6], which can act as a temporary framework for 
providing a suitable environment for cell adhesion, growth, and more 
explicitly help bone tissue regeneration. Bioceramics refer to a class of 
ceramic materials with specific biological or physiological function, and 
can be used directly in the human body or in applications related to the 
human body [7].

Scaffold is a 3D biocompatible structure that can mimic the properties 
of mechanical support, cellular activity and protein production through 
biochemical and mechanical interactions. Also, 3D scaffold provides a 
template for cell attachment and stimulates bone tissue formation in vivo 
[8,9]. Currently, there is an intensive concerning on the development of 
fabrication methods for enhancing the function of scaffolds. Traditional 
or regular methods to fabricate 3D porous scaffolds, such as particle 
leaching, foaming, or freeze-drying, have limitations to precisely 
control the overall architectures and internal pore connectivity [10,11]. 
Advanced additive manufacturing techniques, such as 3D printing, 
can control the architecture and pore structures precisely and produce 
custom-designed, computer-controlled tissue scaffolds, overcoming 
many limitations of current fabrication methods [12]. 

To date, much effort has been made to fabricate bioactive ceramic 
scaffolds by 3D printing techniques, and show great application 
promising in bone tissue engineering. A wide range of bioactive 
ceramics, such as hydroxyapatite (HA), beta-tricalcium phosphate 
(β-TCP), bioactive glass (BG) and calcium silicate (CS), similar in 
composition to the mineral phase of bone are of great clinical interest 
[13]. Bioactive ceramic scaffolds could be implanted into bone defects 
and self-degrade in vivo. Importantly, bioactive ceramic scaffolds are 
able to react with physiological fluids, resulting in the formation of 
strong chemical-force bonding to bone tissues due to the formation of 
bone-like HA layers [14,15]. Nowadays, a variety of studies has reported 
on the relationships among the chemical compositions, bioactivity and 
the fabrication process of scaffolds, modification and so forth.

To date, 3D printing of pure bioactive ceramics has gained much 
progress. However, the development of composite inks quickly emerged 
as the technology grew, especially due to the development of direct ink 
writing printer. The main goal of using composite inks is to enhance ink 
properties such as process ability, printability, mechanics (stiffness) and 
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bioactivity (to enhance cellular function and tissue integration) [16]. 
HA, β-TCP, BG and CS are widely used as the inorganic biomaterials 
due to their excellent osteoconductivity [17]. Polymeric biomaterials 
used for bone tissue engineering applications are usually biocompatible 
polymers (such as poly(lactic acid) (PLA), polycaprolactone (PCL) and 
poly(lactic-co-glycolic acid) (PLGA)) or natural hydrogels (such as 
collagen, chitosan and alginate) [18]. Much progress has been achieved 
on bioceramic/polymer composite scaffolds, bioceramic/hydrogel 
composite scaffolds, and multifunctional bioceramic-based scaffolds.

The advantage of biodegradable bioceramic/polymer composite 
scaffolds is that altering the organic/inorganic material composition or 
ratio can change the properties of the composite scaffolds to satisfy the 
requirements for bone tissue engineering. PLA, PCL, PLGA and so on 
are common biocompatible polymers used for bone tissue engineering 
applications. Also, these biopolymers can act as binders during the 
printing process. For example, Adam et al. [19] 3D-printed a new 
synthetic osteoregenerative biomaterial, hyperelastic “bone” (HB), 
which is composed of 90 wt% HA and 10 wt% PCL or PLGA. The resulting 
3D-printed HB exhibited excellent elastic mechanical properties (~32 to 
67% strain to failure, ~4 to 11 MPa elastic modulus). Beyond these, HB 
became vascularized, quickly integrated with surrounding tissues, and 
rapidly ossified and supported new bone growth without the need for 
added biological factors when implanted in vivo.

Hydrogels are three-dimensional polymer networks that can 
provide excellent “soft material” systems to mimic native extracellular 
matrix (ECM) microenvironments due to their tunable degradation, 
mechanics and functionality [20]. Extrusion-based 3D printing 
systems are the most suitable methods to print bioceramic/hydrogel 
composite scaffolds. The classical approach to design bioceramic/
hydrogel composite scaffolds is to formulate a hydrogel solution firstly 
and incorporate ceramic powders into the hydrogel matrix that forms 
a network immediately after printing. The network could be physically 
or chemically cross-linked in response to an external stimulus (i.e. 
light, temperature, or ion concentration) [21]. Common hydrogels 
for 3D printing are made from natural polymers such as alginate, 
gelatin, agar, cellulose, collagen, silk fibroin, hyaluronic acid, or from 
synthetic polymers such as poly(vinyl alcohol) (PVA), polyacrylamide, 
poly(ethylene glycol) (PEG), or a synthetic-natural mixture.
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Generally, the hierarchical structure, surface and interface of 
biomaterials are important factors that influencing their biological 
properties. Bioactive ceramic scaffolds have been widely used for bone 
tissue engineering by optimizing their chemical composition and 
pore structure. Importantly, bioactive ceramic could be modified with 
various functional materials, and a variety of functional scaffolds have 
been developed for bone tissue engineering.

Many reports are there on the modification of bioactive ceramic 
scaffolds to achieve sustained drug delivery. For example, porous HA 
scaffolds were developed by coating rhBMP-2-delivery microspheres 
with collagen [22]. The coating of rhBMP-2/collagen microspheres 
facilitated the adhesion of hMSCs, and the scaffolds can simultaneously 
achieve localized long-term controlled release of rhBMP-2 and bone 
regeneration, which provided a promising route for improving the 
treatment of bone defects.

For the treatment of bone defects caused by malignant bone 
tumors, functional 3D porous scaffolds that function in both tissue 
regeneration and tumor therapy are expected to address this need. 
Now, some functional materials were incorporated or combined 
with bioactive ceramic scaffold to fulfil more functionality, such as 
magnetic hyperthermia and photo thermal therapeutic properties. 
Yang et al. [23] 3D printed bioactive glass scaffolds and functionalized 
them with black phosphorus (BP) nanosheets, the in situ phosphorus-
driven, calcium-extracted bio mineralization of the intra-scaffold BP 
nanosheets enables both photo thermal ablation of osteosarcoma 
and the subsequent material-guided bone regeneration, which 
provides a feasible countermeasure for efficient localized treatment of 
osteosarcoma.

In summary, the shapes of bone defects caused by trauma, tumors 
or disease are often irregular. Together with modern imaging and 
computer aided manufacturing technologies, 3D printing can fabricate 
special shaped scaffolds rapidly and conveniently, which has greatly 
advanced the progress of bone tissue engineering. Further developments 
in 3D printing of bioactive ceramic scaffolds for bone tissue engineering 
will require scaffold design optimization, better knowledge of cell and 
organ physiology and most importantly, new bioactive ceramics that 
can be 3D-printed and also emulate the compositional, structural, and 
functional complexities of human natural bone. 
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