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Abstract

Renal Cell Carcinoma (RCC) represents a significant cause of cancer related deaths in the United States and
worldwide. Current conventional imaging modalities including Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI) reveal high resolution images of structural abnormalities; but these same modalities often
fail to provide the adequate accuracy, specificity and sensitivity for diagnosing RCC from benign lesions. This has
prompted ongoing investigation of molecular imaging modalities as a non-invasive alternative to biopsy. Initial use of
glucose-based imaging agents has proven insufficient for common RCC histologies which have led to the
development of targeted radiotracers to improve sensitivity of these scans. Current trials are ongoing to characterize
the best use of these new targeted agents. In addition, novel radiotracer agents to evaluate renal perfusion, renal
tubular function are being created and investigated.

Introduction

Renal cell carcinoma
In 2013 there were estimated to be 65,150 new cases of and 13,680

deaths due to cancer of the kidney and renal pelvis in the United
States, representing about 4% of all cancers in adults [1]. Despite this,
the worldwide incidence and mortality of kidney cancer has shown
signs of stabilization when compared to the past two decades [2]. RCC
originates from the renal tubules and can give rise to different
histology types including oncocytoma, angiomyolipoma, papillary,
chromophobe and clear cell renal carcinoma (ccRCC). Different
morphologic and phenotypic characteristics as well as the associated
metabolic and genetic derangements involved in each tumor help
stratify these histologic RCC subtypes [3,4] of renal tumors of all sizes
about 13% are benign (oncocytoma and angiomyolipoma) and about
87% are malignant (papillary, chromophobe and clear cell), with
papillary type 1 and chromophobe carcinoma being relatively indolent
with more limited metastatic potential whereas papillary type 2 and
clear cell carcinoma typically are more aggressive with greater
metastatic potential [4-6]. Among these malignant tumors, clear cell
represents the most common histologic subtype followed by papillary
and chromophobe [7].

The increased use of advanced cross-sectional imaging modalities
has led to the incidental discovery of more renal tumors [8,9]. With
the advent and wide proliferation of improved anatomical imaging
such as CT scanning and MRI, the greatest increase in diagnosis of
renal masses has been among tumors less than 4 cm in size [10].
Conventional imaging modalities currently in use for evaluation of
patients with known renal lesions cannot accurately distinguish RCC
from a solid benign lesion such as oncocytoma, creating a diagnostic
and management dilemma for physicians. Furthermore, current
imaging modalities cannot give information on metastatic potential or
even intra-tumoral cellular proliferation. CT and MRI both have high
sensitivity but limited specificity for diagnosing RCC and identifying
lesions best managed with surgery as opposed to surveillance [11,12].

Ultrasound or CT guided biopsies represent alternative methods of
sampling tumor specimens in order to accurately diagnosis RCC,
however these methods are invasive, have a small but clinically
relevant incidence of complications, and are non-diagnostic in 10-20%
of cases (inversely correlated to tumor size) [13-16]. Furthermore it
has been shown with small renal masses (SRMs) that up to 25% will be
benign if biopsied [14,16]. In addition, the rate of metastasis for SRMs
has been shown to be very low thus Active Surveillance (AS) has
become increasingly more accepted as a therapeutic option in addition
to surgery or ablation [17,18]. However, finding the balance between
the risk of intervention and the risk of potential metastases has been
the difficult challenge in the management of SRMs.

In light of the limitations of current imaging and biopsies, better
non-invasive methods of diagnosing the RCC variants with the
greatest malignant potential are needed. Molecular imaging of RCC
holds promise in potentially yielding more information than currently
available conventional imaging modalities, and the current targets and
results of molecular imaging research in RCC will be reviewed.

Positron Emission Tomography

FDG-PET in renal cell carcinoma
Positron Emission Tomography (PET) is a nuclear medicine

technique based on the detection and quantification of radiation levels
emitted from radiotracers attached to metabolic substrates or receptor
ligands. These agents are used to provide information regarding a
tumor’s biological features such as cell proliferation, metabolism and
hypoxia [19,20] [18F]–fluorodeoxyglucose (FDG) is the most
commonly used PET radiotracer for oncologic PET imaging [21].
Similar to glucose, FDG is transported into the cell and
phosphorylated by a hexokinase. However, it is not metabolized any
further and accumulates within the cell. Because tumors are typically
more dependent upon glucose metabolism for energy as described by
Warburg et al [22], as well as the fact that tumor cells generally have
higher metabolic rates as a consequence of uncontrolled proliferation,
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FDG-PET often shows greater uptake by tumor cells. An initial series
by Bachor et al. described that FDG-PET had a sensitivity of 77% for
detecting primary renal carcinomas [23]. Many other publications
have evaluated the role of FDG-PET in the characterization of renal
lesions, but most of these studies have failed to evaluate a population
of patients that are of a “truly indeterminate” nature and thus are
really pre-surgical candidates based on their CT scans. Therefore, data
from these publications does not really answer the question of how to
better characterize indeterminate renal lesions. A more recent study by
Ozulker et al, prospectively evaluated 18 patients to determine the
efficacy of FDG-PET in the detection of in patients with indeterminate 
who subsequently underwent surgical resection of their renal masses.
In their series, PET showed a sensitivity of 46.6%, specificity of 66.6%,
and accuracy of 50% for detection of these primary renal cell tumors,
majority (94%) of which were of clear cell histology [24]. This most
recent publication suggests a questionable role of FDG-PET for
imaging indeterminate renal masses, but larger studies are required to
validate their results.

In addition to its possible role as a diagnostic tool in primary RCC,
FDG-PET has been described as a useful tool for the detection of local
recurrence and metastasis [25,26] Safaei et al reported a sensitivity and
specificity of 82% and 88% respectively for FDG-PET for the staging of
36 patients with advanced RCC (based on biopsy proven lesions) [27].
Additionally, Majhail and coworkers reported that for detection of
distant metastasis, FDG-PET only had a sensitivity of 63.6% but a
specificity of 100% [28]. In a larger series of 66 patients, Kang et al
described that FDG-PET was outperformed by CT in terms of
sensitivity for detection of retroperitoneal lymph nodes and renal bed
recurrences (75% for FDG-PET vs 92.6% for CT), lung metastasis
(75% vs 91.1%) and bony metastasis (77.3% vs 93.8%) [29]. In a more
recent series, Nakatani et al evaluated the performance of FDG-PET
for detection of recurrence, with better results. Twenty-three patients
underwent FDG-PET scans at least 6 months after surgery. They
found 16 patients with demonstrated recurrence for RCC. The overall
sensitivity, specificity and accuracy of FDG-PET for detection of
recurrence were 81%, 71% and 79% respectively. They described that
FDG-PET correctly detected local recurrence in peritoneum, bone,
muscle and the adrenal gland [30]. There were several limitations to
this study, including its retrospective nature and small number of
patients. However, it suggests a possible role for FDG-PET in the
setting of detection of recurrence of RCC. In 2012, Wang et al
published a meta-analysis describing the diagnostic performance of
FDG-PET and PET/CT in RCC. They included 14 studies in their
analysis and reported a pooled sensitivity and specificity for FDG-PET
in RCC of 62% and 88% [31]. When looking at detection of extra-renal
lesions, the pooled sensitivity and specificity was 79% and 90%
respectively when based on the scans. Furthermore, they report that
the sensitivity and specificity was improved when a hybrid FDG-
PET/CT was used to detect extra-renal lesions, reaching 91% and 88%
respectively. Based on these results, the authors suggest that FDG-PET
in combination with CT is helpful in detecting extra renal metastasis
from RCC but further evidence is needed to investigate use for
primary renal lesions.

While the role of FDG-PET in localized and metastatic clear cell
RCC may still be unclear, there are other histologies for which FDG-
PET may have better performance characteristics and therefore greater
application. Several variants of RCC have been found to result from
mutations in the Krebs cycle enzymes. For example, germline
alterations of the enzyme fumarate hydratase within the Krebs cycle
has been associated with papillary type II renal cell carcinoma in

patients with hereditary leiomyomatosis and renal cell cancer
(HLRCC) [32-34]. Due to the Warburg effect, these tumors are
entirely dependent on aerobic glycolysis resulting in exceptionally high
glucose utilization [22]. In addition, hereditary succinate
dehydrogenase-related renal tumors also appear to be reliant on
aerobic glycolysis due to disruption of the Krebs cycle [35]. This
dependence on glucose for proliferation theoretically makes these
types of tumors particularly good FDG-PET targets; and recently data
supporting this hypothesis has been presented [36]. Larger prospective
studies are required to better characterize this data. Nonetheless, these
findings demonstrate that understanding the genetic and metabolic
derangements within tumors can guide not only therapy but also
decisions regarding which diagnostic modalities are most appropriate.

In addition to FDG, other PET tracers have also been investigated.
Oyama et al showed that 11C-acetate, a tracer already found to have
high uptake in prostate cancer before treatment, had increased uptake
in a size- dependent manner in a small cohort of 20 patients with renal
tumors[37,38] 18F-fluorothymidine, a radioisotope based on the
nucleic acid thymidine which has been found to be a promising tracer
in other human cancers, was shown to accurately identify RCC in a
single patient case report [39] Finally 18F-fluoromisonidazole, a
compound whose tissue retention and metabolism relies on the
amount of tissue oxygenation, was found to have only mild tumor
uptake in a cohort of 11 patients with RCC [40]. Although these PET
tracers have demonstrated some accuracy in detecting RCC, their
specific roles have not been studied in larger patient trials.

Carbonic anhydrase IX

Carbonic anhydrase ix expression and renal cell carcinoma
Clear cell Renal Cell Carcinoma (ccRCC) represents the most

prevalent histologic subtype of renal cell adenocarcinoma. The
metabolic pathway underlying ccRCC has been extensively studied.
Germline mutations in the von Hippel-Lindau (VHL) gene in patients
with VHL disease gives rise to the hereditary form of clear cell renal
carcinoma, and similarly methylation or mutation of the VHL gene is
present in about 90 percent of tumors in patients with sporadic clear
cell kidney cancer[3,41-43]. Carbonic anhydrase IX (CAIX), a
transmembrane and cytosolic glycoprotein involved in the regulation
of pH and acid-base balance within the body, expression is molecularly
linked to the Von Hippel-Lindau protein (pVHL) and has been shown
to be regulated by the transcription factor hypoxia-inducible factor-1α
(HIF-1α) [44]. In a normal oxygenated environment HIF-1α is
hydroxylated by propyl hydroxylase domain proteins and then bound
by pVHL, leading to the ubiquination and subsequent degradation of
HIF-1α. However, in a hypoxic environment the binding of HIF-1α to
pVHL is inhibited, allowing the formation of the HIF-1α- HIF-1β
dimer complex, accumulation of HIF-1 and the ensuing transcription
of several hypoxia-inducible genes including CAIX [45]. These
metabolic and genetic derangements as well as the presence of hypoxia
both result in the downstream effects and subsequent cell
transformation in ccRCC. The reduction in tumor hypoxia after
sunitinib therapy, evaluated using 18F-fluoromisonidazole PET/CT,
described in a cohort of metastatic RCC (mRCC) patients further
highlights the inextricably link between hypoxia and the metabolic
basis of kidney cancer[46].

Immunochemistry and reverse transcription-polymerase chain
reaction have been used to determine the level of CAIX antigen
expression in the different RCC histologic subtypes. CAIX was found
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to be a potential marker for ccRCC, demonstrating high and
homogenous levels of expression in majority of the tumors, whereas its
expression in oncocytomas, papillary and chromophobe RCC was
significantly lower [47,48]. CAIX expression is also present in some
normal tissues including gastric mucosa, pancreatobiliary epithelium,
small intestine crypt base, mesothelial cells, ovarian surface epithelium
and fetal rete testis, but not in normal kidney tissue [45,48]. The
molecular association between CAIX and pVHL and the nearly
uniform mutational loss of the VHL gene seen in ccRCC with the
resultant downstream effects explains the ubiquitous expression of the
CAIX antigen in ccRCC [49].

Carbonic anhydrase ix expression and prognostic value
Several studies have reported correlations with low CAIX

expression and poor outcomes in patients with RCC, with
overexpression of CAIX yielding a more favorable prognosis in these
patients [50-54] Bui et al showed that in metastatic ccRCC patients,
after adjusting for primary tumor classification, Fuhrman grade, nodal
status and Eastern Cooperative Oncology Group (ECOG)
performance status, that low CAIX expression was associated with an
increased risk of death [50]. This same group also reported, after
multivariate analysis, that low CAIX expression in conjunction with
high Ki-67 (a nuclear protein associated with cell proliferation) was
significantly correlated with a poor median RCC-specific survival [51].

However, Leibovich et al found that in 730 surgically treated
patients with unilateral sporadic ccRCC, after adjusting for pathologic
features including nuclear grade or coagulative tumor necrosis, that
CAIX was not an independent predictor of outcome in patients with
ccRCC [48]. This same group recently did an additional 5-year follow
up on the same patient cohort confirming their initial result that CAIX
is not an independent prognostic marker for ccRCC [55]. In addition,
the prospective data from the SELECT trial has not reported any useful
biomarkers for predicting response to immunotherapy [56]. Given
these contradicting studies, additional studies are needed to elucidate
the actual prognostic value of CAIX.

Carbonic anhydrase ix diagnostic imaging
In 1986, an immunohistochemical study done by Oosterwijik et al

first described the recognition of a tumor antigen, present on RCC
cells and not on normal renal cells, by a monoclonal antibody G250
(MAb G250) [57]. This finding suggested the potential for this MAb
G250 recognized moiety for future radioimmunodetection. The G250-
antigen was later found to be an isoenzyme of the carbonic anhydrase
family and identical to MN/CAIX, a tumor associated antigen of the
cervix [58].

Numerous clinical trials have been conducted with different
radiotracers to determine the diagnostic accuracy of MAb G250 in
ccRCC. Steffens et al determined the pharmokinetics, toxicity,
immunogenicitiy and imaging characteristics of 131I-labeled chimeric
MAb G250 (girentuximab) in primary ccRCC patients prior to
nephrectomy. This study showed that at the optimum protein dose of
5-10mg, excellent visualization of primary and metastatic G250-
antigen positive tumors was attained in all 13 patients [59]. When
RadioImmunoScintigraphy (RIS) with 131I-labeled chimeric MAb
G250 was then compared with [18F] FDG-PET for detecting known
metastatic lesions in RCC patients, it was found that the 131I-labeled
chimeric MAb G250 identified only 30%, whereas [18F] FDG-PET
detected almost 70% of these lesions [60]. A comparative intrapatient

study in mRCC patients further showed that radiometal 111In-labeled
cG250 detected 47 metastatic lesions compared to 131I-labeled cG250
which detected 30 metastatic lesions. The better imaging detection and
increased tumor:blood ratios noted in this study were attributed to the
difference in internalization and metabolism of the radiolabeled MAb,
with the catabolite of 131I-cG250 being rapidly excreted from the
tumor cells and the catabolite of 111I-ITC-DTPA-cG250 being
retained in the tumor cells [61]. In a retrospective analysis of 22
patients, 111In-girentuximab immune-single positron emission
computed tomography (immunoSPECT) was also shown to be a useful
non-invasive tool for detecting indeterminate primary ccRCC lesions
and for characterizing lesions suspicious for metastasis [62].

Immuno-PET, which combines MAb cG250 identification with the
good features of PET imaging, has been studied with the positron
emitter 124I. In a Phase I prospective clinical trial in 26 patients prior
to nephrectomy, Divgi et al showed that 124I-cG250 immuno-PET
detected 15 out of the 16 ccRCC lesions resulting in a sensitivity of
94% (95% CI 70–100%), specificity of 100% (95% CI 66–100%),
positive predictive value of 100% (95% CI 78–100%) and negative
predictive value of 90% (95% CI 55–100) [63]. They concluded that
124I-cG250 immuno-PET can be an effective method for
characterizing renal lesions thereby helping guide clinical decision
making and surgical management. Another study examined the
surgical specimens from this Phase I clinical trial and found that in
vivo quantification of CAIX antigen expression and 124I-cG250
binding with PET/CT correlated strongly with in vitro measurements
of these parameters, highlighting further the potential for immunoPET
in antibody based therapies [64]. A more recent large multicenter
prospective Phase III clinical trial (REDECT trial) showed that 124I-
cG250 PET/CT was superior to contrast-enhanced CT (CECT) in
identifying ccRCC in patients prior to nephrectomy. For 124I-cG250
PET/CT and CECT readers in all 14 centers in the REDECT trial, the
average sensitivity was 86.2% and 75.5% (P=.023) respectively and the
average specificity was 85.9% and 46.8% (P=.005) respectively [4,65].

Other studies have outlined the advances in the use CAIX for
targeted radio-immunotherapy for ccRCC [66], however this topic is
beyond the scope of this manuscript.

Conclusion
RCC continues to be an important cause of cancer-specific

mortality in the United States, necessitating the need for better
diagnostic accuracy, clinical decision making and treatment for RCC
patients. Molecular imaging modalities represent a non-invasive
alternative option for improving the specificity and sensitivity of
diagnosing RCC when compared to conventional imaging modalities
(CT and MRI) and invasive diagnostic biopsies.

FDG-PET has extensive use in oncologic imaging due to the
increased glucose metabolism seen in most tumors. One disadvantage
of FDG-PET use in renal imaging is that FDG is excreted by the
kidneys and therefore causes an increased amount of background
activity, which is minimally helped by diuretic administration and
excessive hydration. FDG-PET has not been shown to be great
modality for identifying primary renal lesions, but a recent meta-
analysis showed that FDG-PET/CT is superior in detecting extra-renal
metastasis from RCC. This study clearly delineated the role of FDG-
PET in identifying extra-renal tumors, however larger clinical trials for
RCC patients with truly indeterminate renal tumors are needed to
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confirm its role in primary RCC. Very limited studies have been done
with other PET tracers and diagnostic imaging for RCC.

Clear cell RCC represents an aggressive histologic sub-type of RCC.
The high expression of the transmembrane and cytosolic glycoprotein
CAIX in ccRCC has been pivotal for the advances in
radioimmunodetection with the chimeric MAb G250. The use of the
positron emitter 124I in combination with PET imaging has
demonstrated great diagnostic utility, with the recent multicenter
REDECT trial showing the accuracy of 124I-cG250 PET/CT in
identifying ccRCC with an average estimated sensitivity and specificity
of 86.2% and 85.9% respectively. Future directions includes a head to
head comparison of 124I-cG250, 111In-cG250 and FDG-PET in
detecting ccRCC, as no studies have been done directly comparing
these agents. Additionally a study looking at the size detection limits of
124I-cG250 PET/CT and its use in patients who are not considered to
be pre-surgical will be imperative for further investigation of this
imaging method.

Molecular imaging modalities have been continually investigated
for use in diagnosing RCC. Further work in this area is important for
determining the role of these modalities in improving the diagnostic
accuracy and subsequent clinical management of patients with RCC.
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