conferenceseries.com

5th International Conference and Expo on

Ceramics and Composite Materials

June 03-04, 2019 | London, UK

The interplay of phases, structural disorder and dielectric behavior in Al doped BiFeO₃-BaTiO₃ ceramics

Jiangguli Peng^{1, 2, 3}, Jiangtao Zeng¹, Liaoying Zheng¹, Guorong Li¹, Nader Yaacoub³, Mohamed Tabellout³, Alain Gibaud3 and Abdelhadi Kassiba³

Shanghai Institute of Ceramics-CAS China

A l doped BiFeO₃-BaTiO₃ (BFA-BT) systems with a defined composition were prepared by solid-state method. The enhanced spontaneous and remnant polarization were achieved in BiFe_{0.970}Al_{0.030}-BaTiO₃ with 36.8 μ C/cm², 31.5 μ C/cm² respectively. From SEM and XRD analyses, the high-density of the ceramics and the high lattice parameters ratio c_t/a_t traducing large distortions of the rhombohedral phase play a dominant role in the enhanced piezoelectric properties. The high polarization and large strain were achieved in the BF_{0.970}A_{0.030}-BT system. ⁵⁷Fe Mössbauer spectra revealed the large disorder of Fe³⁺ at B sites preferentially occupied by more Al³⁺ doping ions, forming the diffusive phase transition for dielectric behaviors in samples. Grain and grain-boundary effects were pointed out from the dielectric modulus and a related thermal evolution. AC capacitances indicated two relaxation processes marked by the grains and interfaces involved in the polycrystalline ceramics for highly doped systems. The work will be significant to illuminate the interplay between structures and properties in ferroelectric materials.

pjguli@student.sic.ac.cn

²University of Chinese Academy of Sciences, China

³Institute of Molecules at Materials in Le Mans, France