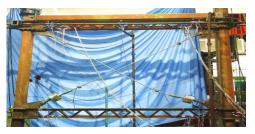
4th International Conference on


ADVANCED STEEL STRUCTURES

November 09-10, 2017 Singapore

Seismic performance of prefabricated cable-braced steel frames

Zixuan Shang, Xuechun Liu, Xiaoxiong Cui and Lu Xu Beijing University of Technology, China

Given their superior performance, steel cables have been used in steel structures as braces, but the studies on this topic have not been sufficient. A new type of prefabricated cable-braced steel frame is proposed in this paper. To investigate the seismic performance of a prefabricated cable-braced steel frame, quasi-static tests and finite element analysis are performed on a pure steel frame and on four pairs of cable-braced frames. One frame exhibited no pretension and the other exhibited pretension in each pair. All of the frames were the same, while the cables included different cross-sectional areas among

the four pairs. The analysis examines the hysteresis performance, bearing capacity, ductility, self-centering capabilities and failure modes of the four pairs of cable-braced frames and pure frames. The influence of cable cross-sectional areas on the cable tension, hysteresis performance, bearing capacities, ductility, self-centering capabilities and elastic-plastic development of the cable-braced frames is studied relative to the pure frame. The results of the tests and finite element analysis (FEA) are nearly uniform. The results indicate that cable-braced frames exhibit reasonable levels of hysteresis performance, energy dissipation and self-centering. A larger cable cross-sectional area enables superior self-centering capabilities and more pronounced levels of rigidity degradation. The energy dissipation capacity and displacement ductility initially increase followed by a subsequent decrease with increasing cable cross-sectional area. The influencing factors of lateral stiffness and the load-bearing mechanisms of cable-braced frames are revealed from a theoretical formula of lateral stiffness and from an analysis of bearing capacity and the influence of pretension on cable-braced frames are obtained.

References

1. Liu X C, Yang Z W, Wang H X, et al. (2017) Seismic performance of H-section beam to HSS column connection in prefabricated structures. *Journal of Constructional Steel Research*; 138: 1-16.

2. X C Liu, S H Pu and A L Zhang (2017) Performance analysis and design on bolted connections in modularized prefabricated steel structures. Journal of Constructional Steel Research; 19(9): 183-195, 2017.

3 .Xuechun Liu, Yiwen Zhang, Ailin Zhang, Liang Wu (2017) Model Test for the Tensioning Construction Process of a Large-Span Prestressed Suspended Dome. Advances in Structural Engineering; 20(4): 504-518.

4 .Xuechun Liu, Xinxin Zhan, Ailin Zhang, Xun Zhang, Chen Tian (2017) Random imperfection method for stability analysis of suspended dome. International Journal of Steel Structures; 17(1): 91-103.

Biography

Zixuan Shang is pursuing graduation from the College of Architecture and Civil Engineering of the Beijing University of Technology, China. Her research interests focus on prefabricated steel high-rise steel structures.

501803801@qq.com