Green Chemistry and Technology

September 17-19, 2018 | Amsterdam, Netherlands

The reliability study on the Cu/CHA NH₃-SCR catalysts: SO₃ and Na ions poisoning

Chen Wang and **Xue Kang** North University of China, China

The deactivation mechanism of Cu/CHA ammonia selective catalytic reduction catalysts by SO₃ poisoning has been systematically \mathbf{L} investigated using a range of analytical techniques. In order to study the influence of SO₃ poisoning on active Cu²⁺ ions and the zeolite framework, different sulfate samples were prepared with different contents of SO₃ (0-20%) in SO_x under same poisoning condition. The results reveal the NO conversion of samples poisoned by SO₃ decreased more than that poisoned by SO₃ when temperature ranged between 100° and 600°. The TPR and EPR results demonstrate that SO₃ poisoning does a significant influence on the amount of active Cu^{2+} ions than SO, does. The kinetic results illustrate the SO, poisoning has no impact on the apparent activation energy (Ea) of NH3-SCR reaction over Cu/CHA catalysts. The reason of NH₃-SCR activity declining is the reduction of the number of isolated Cu²⁺ ions among the kinetic temperature regions. The *ex-situ* DRIFTs and BET results expose that the SO₂ poisoning could decrease the crystallization by damaging Si-OH-Al structure. The NH,-SCR activity at high temperature decline because of the NH, migration difficulty resulted by structure damaging. Cu/CHA catalysts have been found to be affected by alkali and alkali earth ions; however, the poisoning mechanism is still unclear. In order to investigate Na poisoning effects and its mechanism on Cu/SAPO-34 and Cu/SSZ-13, five samples with different Na contents were synthesized. The Na effects on the structure, Cu species, and NH₃-SCR reaction over Cu/CHA were characterized through XRD, BET, NH₂-TPD, ex-DRIFTS, H₂-TPR, EPR, activity tests and kinetic experiments, and CO,-DRIFTS were used to probe the types of Na species. The results indicate that the introduced Na⁺ exchanged with H⁺ and Cu²⁺, and it mainly substituted H⁺ from Si-OH-Al, then H⁺ from surface OH, finally isolated Cu²⁺. The exchanged H⁺ led to the structure damaging of Cu/CHA by dealumination, and the exchanged Cu²⁺ aggregated and formed CuOx species. The NH_3 -SCR activity decreased with Na contents, and the loss of isolated Cu^{2+} and CHA structure was responsible for the performance deactivation.

chenwang87@nuc.edu.cn