On the possibility of the numeric periodicity of fundamental physical constants G, h, c and new method of their refining

Valentyn Alekseevitch Nastasenko
Kherson State Maritime Academy, Ukraine

Currently, the force of gravity is determined by the value FG of interaction between the two point bodies of mass m_{1}, m_{2} (kg), which are located at a distance $\mathrm{r}(\mathrm{m})$ between them, according to the law of world gravitation discovered by Newton. However, the force F_{G}, which is found for the interaction of point objects, cannot strictly characterize the strength of the gravitational field, which have a spatial structure that cover the volume of the observable universe sphere. Therefore, the application of Newton's law for its finding is incorrect. This disadvantage is eliminated on the basis of found parameters of the gravitational field waves: the frequency v_{G}, the wavelength λ_{G}, the energy of this wave $\mathrm{E}_{\mathrm{G}}=\mathrm{h} \nu_{\mathrm{G}}$ (where h - is the Plank's constant) and the mass equivalent m_{G} of this wave, which is related to the Plank's mass $m p$ with fundamental physical constants: h, the gravitational constant G and the speed c of light in vacuum. In this case, the total mass m_{2} of the gravitational field waves in Newton's law is replaced by its equivalent Nm_{G}, where N - is the number of wavelengths λ_{G} at a distance r to any object of mass m_{1}, which gives the value $N=r / \lambda_{G}$. These parameters allows us to find a new strict physical dependence for the force F_{G}. With expressing in it the constants $\mathrm{G}, \mathrm{h}, \mathrm{c}$, within the framework of their dimension, through the Plank's values of the length
1_{p}, time t_{p}, and the mass m_{p}, we get: $F_{\sigma}=G \frac{m_{1} m_{2}}{r^{2}}=G \frac{m_{1} N h v_{G}}{r^{2} c^{2}}=G \frac{m_{r} r h v_{G}}{\lambda_{G} r^{2} c^{2}}=G \frac{m h v_{G}}{\lambda_{G} c^{2}} \frac{G h v_{c}}{\lambda_{c^{c}} c^{2}} \times \frac{m_{1}}{r}=c^{2} \times \frac{m_{1}}{r}(N)$. From this dependence it follows that the force
 proportional to the total energy of the mass of selected body and is inversely proportional to the distance r between it and the chosen point of the gravitational field.

Biography

[^0]
Notes:

[^0]: Valentyn Alekseevitch Nastasenko is a candidate of Doctor of Technical Sciences. He is currently working as Professor in the Department of Transport Technologies at the Faculty of Electrical Engineering and Electronics of Kherson State Maritime Academy, Ukraine. His sphere of scientific interests includes cutoff tools and hard-alloy multifaceted unresharpenable plates. He is the author of more than 50 scientific works in these spheres.

