$2^{\text {nd }}$ International Conference on

ATOMIC AND NUCLEAR PHYSICS

November 08-09, 2017 | Las Vegas, USA

From free electron lasers toward the first gamma laser

Branislav Vlahovic

North Carolina Central University, USA

Over the years, it has been recognized by experts of positron community the necessity to have a slow positron source exceeding at least $109 \mathrm{e}^{+} / \mathrm{s}$. However, as of today there is yet to be an existing operational facility achieving this goal. Presently, there are many table-top radioactive source-based and a few linac-based slow e^{+}beams with the intensities limited up to 106 slow $\mathrm{e}^{+} / \mathrm{s}$. Higher intensities have been reached at a linac-based facility (EPOS, Dresden, Germany with the projected intensity of $5 \times 108 \mathrm{e}^{+} / \mathrm{s}$, and at two reactor-based e^{+}facilities (PULSTAR Reactor, NC, USA and NEPOMUC Reactor, Munich, Germany) with intensities close to $109 \mathrm{e}^{+} / \mathrm{s}$. Presented will be our efforts to modify Jefferson Free Electron Laser beamline that will enable achievement of more than $1011 \mathrm{e}^{+} / s$ and intensity better for factor of 10,000 than anywhere else. First, we will be taking advantage of an existing high-power high-energy C.W. electron linac-based beam which allows to control the beam features with high-precision. Second, our approach will allow us to use novel high-efficiency Rare Gas Moderator (RGM), such as solid-Neon, which is more efficient than the ones used in existing linac- and reactor-based facilities. This high brightness could allow for new generation of experiments, including production of positronium atoms at enough high densities, more than $106 \mathrm{Ps} / \mathrm{mm}^{3}$, that will allow for formation of Bose Einstein condensate at relatively high temperatures (15 K), which could ultimately allow for formation of the first gamma laser .
vlahovic@nccu.edu

