

3rd International Conference and Exhibition on Materials Science & Engineering

October 06-08, 2014 Hilton San Antonio Airport, USA

Microstructure and surface morphology of Cu₇₀Fe₁₈Co₁₂ thin films deposited by thermal evaporation technique

Mohammed Azzaz and Hanane Mechri
USTHB, Algeria

CuFe/CuFeCo Granular alloys and Fe/Cu/Co multilayer systems have attracted considerable attention owing to the fundamental scientific interest in them and their potential applications in magnetic recording devices and magnetic sensors. Usually, granular metallic systems are thin films made from grains of magnetic metals (e.g., Co, Fe, Ni) embedded in an immiscible nonmagnetic matrix (e.g. Ag, Cu or Au) deposited on the appropriate substrate. The phenomenon of giant magnetoresistance (GMR) has been observed in 1992 in granular heterogeneous alloys. CuCo, CuFe and Cu Fe Co electrodeposited systems have attracted much attention due to their magnetoresistive effects at room temperature. In the present contribution, Polycrystalline CuFe and CuFeCo granular thin films were prepared by thermal evaporation process (Physical vapor deposition), from the nanocrystalline CuFe and CuFeCo powder obtained by mechanical alloying. After 24 h of milling from elemental powders. The structural properties and morphology of nanocrystalline powder mixture and thin film of CuFe and CuFeCo deposited on glass substrate were examined by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and surface roughness was determined by atomic force microscope (AFM).

kameltaibi@yahoo.fr