

^{3rd International Conference and Exhibition on Materials Science & Engineering}

October 06-08, 2014 Hilton San Antonio Airport, USA

Influence of nanodispersions oncorrosion behaviour of aluminum metal matrix nanocomposites fabricated using powder metallurgy route

E Y El-Kady¹, T S Mahmoud¹, M Abdel-Aziz² and **T A Khalil¹** ¹Benha University, Egypt ²Central Metallurgical Research and Development Institute, Cairo

The corrosion behaviour of Al/SiC and Al/Al₂O₃ metal matrix nanocomposites (MMNCs) using electrochemical measurements in 3.5 wt.%NaCl solution were studied. Several Al MMNCs containing different sizes, typically, 60 nm and 200 nm and different volume fractions of SiC and Al₂O₃nanoparticulates were manufactured using conventional powder metallurgy (PM) route. The results revealed that the corrosion rates of the 60 nm Al/SiC and Al₂O₃nanoposites in 3.5 wt.%NaCl solution was reduced with increasing the volume fraction of the nanoparticulates. The Al/5 vol.-% SiC (200 nm) nanocomposites exhibited the lowest corrosion resistance among all the investigated materials even the pure Al matrix. The Al/SiCnanocomposites exhibited better corrosion resistance in 3.5 wt.%NaCl solution than the Al Al₂O₃nanocomposites.

eyelkady@yahoo.com