conferenceseries.com

3rd International Conference on

Smart Materials & Structures

March 20-22, 2017 Orlando, USA

α -hematite-molybdenum disulfide and polyhexylthiophene (RRPHTh)-nanodiamond (ND) electrodes for photoelectrochemical applications

Hussein Alrobei and Manoj K Ram University of South Florida, USA

The alpha (α)-hematite (Fe_aO_a) nanomaterial is attractive due to its band gap, chemical robustness, availability in the nature and \bot excellent photoelectrochemical (PEC) properties to split water into oxygen and hydrogen. However, the α -Fe₂O₃ suffers from low conductivity, slow surface kinetic, low carrier diffusion and greater electron-hole combination. The electronic properties such as carrier mobility and diffusion of α -Fe₃O₃ can be improved through doping, synthesis of composite material or formation of structured films. Recently, 2D-molybdenum disulfide (M_S), has shown interesting photocatalytic activity due to its bonding, chemical composition, doping and nanoparticles grown on other 2D-film. Recently, our group has studied photoelectrochemical properties of hybrid film of regioregular poly (3-hexylthiophene-2, 5-diyl) (P3HT) with nanodiamond as well as P3HT-M₂S,. In the present study, we have studied photoelectrochemical properties of polyhexylthiophene (RRPHTh)-nanodiamond (ND) and α -Fe₂O₃-M₂S₂ nanocomposite based electrodes films. The photoelectrochemical properties of α -Fe₂O₃-M₂S₂ as n-type and ND-RRPHTh as p-type electrodes in photoelectrochemical cell in various electrodes have been studied. We have obtained 3 to 4 times higher photocurrent and energy conversion efficiencies than the parent electrode based photoelectrochemical cell. We have synthesized nanocomposite α -Fe₂O₂- M_sS_s using sol-gel technique. The nanocomposite α -Fe₂O₃-M_sS₂ as well as ND-RRPHTh films were characterized using SEM, X-ray diffraction, UV-vis, FTIR and Raman techniques. The electrochemical techniques were used to understand the photocurrent in electrode/electrolyte interface of α -Fe₂O₃-M₂S₂ as well as ND-RRPHTh films in both acid base based electrolyte. The α -Fe₂O₃-M₂S₂ and ND-RRPHTh electrodes reveal improved production of hydrogen compared to α -Fe₂O₃ and aluminum doped α -Fe₂O₃ and M₂S₂ doped α -Fe₃O₃ nanostructured films. The band structure has been used to understand the mechanism of photoelectrochemical water splitting in p-n types based photoelectrochemical cell.

Biography

Hussein Saad Alrobei is a PhD candidate at Mechanical Engineering Department, University of South Florida, USA and lecturer at Mechanical Engineering Department, Prince Sattam Bin Abdulaziz University, Saudi Arabia.

alrobei@mail.usf.edu

Notes: