

20th International Conference on

Emerging Materials and Nanotechnology

June 25-26, 2018 | Vancouver, Canada

Growth of nanowires along arbitrary design crystal direction

Ye Tao

Rowland Institute at Harvard, USA

The production of nanowire materials, uniformly oriented along any arbitrarily chosen crystal orientation, is an important, yet unsolved, problem in material science. We devised a generalizable solution to this material science problem, using FeCo as the demonstration material system. The solution is based on the technique of glancing angle deposition combined with a rapid switching of the deposition direction between crystal symmetry positions. We showcase the power and simplicity of the process in one-step fabrications of $<1\ 0\ 0>$, $<1\ 1\ 0>$, $<1\ 1\ 1>$, $<2\ 1\ 0>$, $<3\ 1\ 0>$, $<3\ 2\ 0>$ and $<3\ 2\ 1>$ -oriented nanowires, three-dimensional nanowire spirals, core-shell heterostructures and axial hybrids. The resulting nanowires are single-crystals, have high saturation magnetization of 2.0(2) Tesla, and passivated by a surface oxide below 3 nm in thickness after one year of storage in air. Our results provide a new capability for tailoring the shape and properties of nanowires, should be generalizable to any material that can be grown as a single-crystal biaxial film, and has already offered a new route towards next-generation tip-on-cantilever magnetomechanical sensors for atomic resolution magnetic resonance imaging.

tao@rowland.harvard.edu