

20th International Conference on

Emerging Materials and Nanotechnology

June 25-26, 2018 | Vancouver, Canada

Microwave-assisted catalytic synthesis of bio-based copolymers from waste cooking oil

Muhammad Arshad, Mahrzadi Noureen Shahi and Aman Ullah

University of Alberta, Canada

Solvent-free copolymerization of epoxides derived from fatty esters of waste cooking oil with phthalic anhydride using (salen)Cr^{III}Cl as catalyst and n-Bu₄NCl/DMAP (tetrabutylammonium chloride/4-(dimethylamino)pyridine) as co-catalysts was carried out for the first time under microwave irradiation, where reaction time was reduced from a number of hours to minutes. The polyesters were obtained with molecular weight (M_w = 3100–6750 g/mol) and dispersity values (D = 1.18–1.92), when (salen)Cr^{III}Cl/n-Bu₄NCl was used as catalysts. Moreover, in the case of DMAP as a co-catalyst, polyesters with improved molecular weight (M_w = 5500–6950 g/mol) and narrow dispersity values (D = 1.07–1.28) were obtained even at reduced concentrations of (salen)Cr^{III}Cl and DMAP. The obtained products were characterized and evaluated by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance (1H-NMR) spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) techniques. This renewable (waste/recycled cooking oil) based biopolymers with good molecular weight have a great potential to replace petroleum based products in the future. This study will contribute greatly to making waste cooking oil useful for the polymer industry.

arshad4@ualberta.ca