19th World Congress on

Materials Science and Engineering

June 11-13, 2018 | Barcelona, Spain

Evolution of A201 alloys microstructure during thermal treatment: influence of Si, Ti and B

S. Abd El Majid¹, M. Bamberger¹, A. Katsman¹ ¹Technion – Israel Institute of Technology, Israel

D ifferent metastable phases formed during thermal treatment of Al-Cu alloys were investigated by combination of HRTEM, TEM+EDS and HRSEM techniques. The based Al - 4.97 wt. % Cu - 0.56 wt. % Ag alloy (A201) was modified by different additions of Si, Ti and B. Microstructure and mechanical properties were studied in the as-cast, solution treated (at 550°C for ~20 hours) and aged (at 170°C up to 32 days) conditions. The precipitation sequence during aging was the following: supersaturated solid solution (SSSS) \rightarrow GP zones $\rightarrow \theta'' \rightarrow \theta' + \Omega \rightarrow \theta$. During the early stages of aging GP zones are nucleated as single layers of Cu parallel to {100} planes of the \rightarrow -Al matrix. Then these GP zones are united and generate the metastable θ'' -CuAl₃ phase consisting of several single atomic layers of Cu, each of them separated by three atomic layers of Al. The Ag, Ti and B additions resulted in nucleation of metastable semi-coherent θ phase formed at {111} α -Al planes. The Si addition increased nucleation of GP zones and inhibited Ω phase. The following aging resulted in θ'' transformation to semi-coherent metastable θ' -CuAl₂. The mechanism of this transformation is discussed. The next step of microstructure evolution is diffusional dissolution of θ'' precipitates in the presence of more stable θ' and Ω phases. The maximum microhardness corresponded to simultaneous formation of semi-coherent θ' and Ω precipitates. After extended aging, the θ' transforms to stable incoherent BCT θ -phase.

eng.suzan26@gmail.com