6th International Conference and Exhibition on

MATERIALS SCIENCE AND CHEMISTRY

May 17-18, 2018 | Rome, Italy

Investigation of mineral beyerite (CaBi₂O₂(CO₃)₂): As a multifunctional material

Vidhu Malik, Meenakshi Pokhriyal and Sitharaman Uma University of Delhi, India

Heterogeneous catalysis and photocatalysis have emerged as the most sought after research topics towards minimizing the environmental impacts from unwanted and harmful chemical products. The nontoxic and stable mixed metal oxides such as BiVO₄, Bi₂WO₆, and BiOX containing Bi³⁺ cation offer an interesting choice for semiconductor photocatalysis. Apart from BiVO₄, other bismuth containing compounds such as Bi₂MOO₆, Bi₂CuO₄ and Bi₂O₂CO₃ have been investigated extensively. Most of these materials are being made into different heterostructures in order to improve the photocatalytic efficiency especially under visible light irradiation. Bi₂O₂CO₃ belongs to the sillen family and is an intergrowth of $[Bi_2O_2]^{2+}$ layers and $(CO_3)^2$ layers formed in such a way that the plane of the $(CO_3)^2$ group is orthogonal to the plane of Bi-O layers. The other bismuth carbonate known as mineral beyerite, CaBi₂O₂(CO₃)₂has been relatively less explored. Beyerite has the $[Bi_2O_2]^{2+}$ layers along with the additional Ca²⁺ ions and the layer sequence is $(Bi_2O_2)^{2+}$. CO₃²⁻ Ca²⁺ - CO₃²⁻ (Bi₂O₂)²⁺. Herein, we present bismuth calcium oxy carbonate; CaBi₂O₂(CO₃)₂ synthesized via single step solvothermal route and the Rietveld refinements of the PXRD measurements confirmed the structure (S G Immm, a=3.76283(5) Å; b=3.75493(8) Å; c=21.6611(5) Å). Corroborating results from other basic characterizations i.e. Fourier transformed infrared (FT-IR), thermogravimetric analysis (TGA), Raman, ultra-violet diffuse reflectance spectroscopy (UV-DRS) and field emission-scanning electron microscopy (FE-SEM) of this mineral will also be presented. Experimental details and significant results showing the mineral's ability to perform as a catalyst, photocatalyst and as a luminescent host will be included.

vidhimalik2012@gmail.com