

7th International Conference on

Smart Materials and Sustainable Technologies

April 08-09, 2019 | Toronto, Canada

ACCEPTED ABSTRACT

JOURNAL OF MATERIAL SCIENCES & ENGINEERING 2019, VOLUME 8 | DOI: 10.4172/2169-0022-C3-132

Carbon nanostructure modified lifepo₄ cathodes for lithium ion battery applications

Lama Mahmoud

Zayed University, UAE

Lithium-ion batteries (LIBs) are currently the leading energy storage technology. Owning to its electrochemical convenience, light weight and ease of fabrication, LIBs are used for portable power-hungry devices such as electric vehicles (EV) and hybrid electric vehicles (HEV). Specifically, Lithium Iron Phosphate (LiFePO₄) is an environmentally friendly material with superior electrochemical properties to serve as a cathode material in LIBs. Currently,

LiFePO₄ is tied by its poor electrical conductivity in the order of 10⁻⁹ S/cm and sluggish ion diffusion coefficient in the order of 10⁻¹⁶ cm²/s; both of which are key culprits in limiting its commercialization. In this work, Carbon nanostructures (CNS), which consist of a macrostructure of highly entangled MWCNTs in a networked form, are used as a conductive additive as well as microbinder for LiFePO₄. Results confirm that the 3D conductive network encapsulated the LiFePO₄ particles homogenously facilitating the charge transfer at the electrode-electrolyte interface and within the interior of the electrode. Consequently, composition, scan rate and porosity of the paper-like

cathode were sequentially varied and their influence was systematically monitored by means of Linear Sweep Cyclic Voltammetry (CV) and AC electrochemical Impedance Spectroscopy (EIS) tests. A key finding in this portion of the work is that electrodes with 20 wt.% and 49±2.5% porosity had realized improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively, in comparison to conventional LiFePO₄/PVDF/C cathodes. As such, the developed LiFePO₄/CNS composite cathodes could potentially serve for high power density and microelectronic applications.

eng.lama.mahmoud@gmail.com