4th International Conference on

Polymer Chemistry

June 25-27, 2018 | Stockholm, Sweden

Controlled synthesis and layer-number-dependent catalytic properties of few-layered MoS2/CdS Van der Waals heterostructures for efficient photocatalytic H, evolution

Shahid Iqbal Xi'an Jiaotong University, China

In a typical photocatalytic reaction, efficient solar light harvesting and charge generation, as well as effective charge transport, are key factors that determine the efficiency of the photocatalytic system for H_2 production. Atomically layered heterostructures have attracted significant research interest due to their unique layer-dependent catalysis and electronic properties. Previous studies have reported that the catalytic properties of MoS₂ layered materials are highly dependent on the number of layers, and the difficulty of controlling the number of layers over a substrate has been a bottleneck for widespread use. Therefore, developing a simple, facile and environmental friendly method to fabricate Van der Waals heterostructures (vdWHs) with precisely controlled MoS₂ layers for achieving highly efficient H_2 generation is still a challenge. Here, we report for the first time that the H_2 bubbles generated by photocatalytic water splitting are effective in the layer-by-layer exfoliation of MoS₂ nanocrystals (NCs) into few layers. The as obtained few layers can be *in situ* assembled with CdS nanosheets (NSs) into vdWHs of few-layered MoS₂/CdS NSs which, in turn, are effective in charge separation and transfer, leading to enhanced photocatalytic H_2 production activity. The few-layered MoS₂/CdS vdWHs exhibited a H_2 evolution rate of 140 mmol g(CdS)⁻¹ h⁻¹ and achieved an apparent quantum yield of 66% at 420 nm. This study provides a new strategy for the design of noble-metal-free few-layered MoS₂/CdS vdWH systems for photocatalytic H_2 generation. We believe that this bubble exfoliation strategy can be extended to a range of other layered transition metal dichalcogenide compounds.

shahidgcs10@yahoo.com