15th Annual Congress on

MATERIALS RESEARCH & TECHNOLOGY

February 19-20, 2018 | Paris, France

Effect of polydopamine-modified surface for electrospun LiFePO₄ cathode material

Mi-Ra Shin, Ji-Woong Shin, Jin-Ju Bae, In-Seok Seo, Tae-Whan Hong and Jong-Tae Son Korea National University of Transportation, Republic of Korea

A lthough the attainable specific energy density and cycle stability of LiFePO_4 is only higher than that of LiCoO_2 , LiFePO_4 has the low electronic and ionic conductivity. The common strategy to solve this problem was to downsize LiFePO_4 and to coating the nano-crystal with conductive carbon film. This study was prepared nano-sized LiFePO_4/C cathode material by electrospinning method and surface of manufactured cathode material was fabricated by a facile and cost-effective dip-coating method to improve the interfacial hydrophilic, electrical conductivity and electrochemical performance of electrode. Due to the PDA coating, it makes the nano-fiber surface hydrophilic and thus increases the electrolyte uptake and ionic conductivity, resulting in the enhanced performance of Li-ion batteries. PDA-LiFePO₄ and uncoated cathode material were evaluated by contact angle test and uptake volume of liquid electrolyte, AFM, FE-SEM (field emission scanning electron microscope) and electrochemical measurements. The results improved electrochemical performance and hydrophilic property of PDA coated cathode material compared to bare cathode material.

Biography

Mi-Ra Shin has attendant Korea National University of Transportation and majored in rechargeable batteries and manufactures nanofibers of various compositions using electro-spinning. In addition, she has published more than two papers in a reupted journal.

smr4018@hanmail.net

Notes: