9th World Congress on

MATERIALS SCIENCE AND ENGINEERING

June 12-14, 2017 Rome, Italy

Enhancing the photocatalytic activity for pollutant degradation and H₂ evolution by modifying ZrO₂ with nanoclusters of BiVO₃, Ag₃PO₄, SrTiO₃ and WO₃: A first-principles study

Francis Opoku¹, Krishna Kuben Govender², Cornelia Gertina Catharina Elizabeth van Sittert³ and Penny Poomani Govender¹ ¹University of Johannesburg, South Africa ²Center for High Performance Computing, South Africa ³North-West University, South Africa

Environmental pollution and energy exhaustion has received much interest both in scientific and industrial research fields. For this reason, tremendous efforts are made to design novel environmentally friendly non-polluting and sustainable energy storage photocatalysts for efficient solar energy harvesting and conversion. Semiconductor-based photocatalysis has received increasing attention in energy storage and environmental remediation process due to the abundantly solar energy. For this purpose, several heterostructures using BiVO₄, Ag₂PO₄, SrTiO₃ and WO₃ monolayers coupled with ZrO₃ nano-cluster are designed to examine their potential applications in energy storage and degradation of pollutants using density functional theory calculations for the first time. Moreover, the underlying mechanism, band edge positions, optical and electronic properties of the ZrO₂-basedheterostructures are evaluated. The results displayed that the calculated band gap of the heterostructures is reduced compared to the pure ZrO₃, which favors redshift absorption. A type-I band alignment was attained for the BiVO4/ZrO2, Ag1PO4/ZrO2 and WO3/ZrO2 heterostructures. More importantly, the type-II staggered band alignment formed in the SrTiO₃/ZrO₂ heterostructure restrained the charge recombination rate of the photoinduced carrier charges, as well as enhancing the photocatalytic activity. Our results display efficient charge separation and visible light response of the BiVO,/ZrO,, Ag,PO,/ZrO,, WO,/ZrO, and SrTiO,/ZrO, heterostructures. In particular, suitable band alignment of SrTiO₃/ZrO₂ with enough driving forces for charge carrier transfer show overall water splitting and degradation of pollutant in which SrTiO₃ acted as the charge separation center. Thus, the SrTiO₃/ZrO₂ heterostructure emerges as a new type of ZrO₂-based photocatalyst for efficient solar energy applications. Furthermore, h+, HO and O₂- radicals played a major role in the photocatalysis process. Finally, possible charge separation and photocatalytic mechanisms of BiVO₄/ZrO₂, Ag₃PO₄/ ZrO₂, WO₃/ZrO₂ and SrTiO₃/ZrO₂ heterostructures are proposed.

Figure 1: Schematic of the photodegradation mechanism of organic pollutants in water resources.

Biography

Francis Opoku received his BSc in Chemistry (2010) and MPhil in Inorganic Chemistry (2014) from the Kwame Nkrumah University of Science and Technology, Ghana. He is now pursuing PhD degree in Chemistry under the supervision of Dr. Penny Poomani Govender, Dr. Krishna Kuben Govender and Dr. Cornelia Gertina Catharina Elizabeth van Sittert in the Department of Applied Chemistry, University of Johannesburg, South Africa. His research interests include the design of efficient semiconductor-based photocatalyst materials and their applications in water splitting as well as degradation of pollutants in wastewater/water resources.

Notes:

ofrancis2010@gmail.com